
CHAPTER 10:

ALGORITHM DESIGN TECHNIQUES

So far, we have been concerned with the efficient implementation of algorithms.

We have seen that when an algorithm is given, the actual data structures need not

be specified. It is up to the programmer to choose the approriate data structure

in order to make the running time as small as possible.

In this chapter, we switch our attention from the implementation of algorithms to

the design of algorithms. Most of the algorithms that we have seen so far are

straightforward and simple. Chapter 9 contains some algorithms that are much more

subtle, and some require an argument (in some cases lengthy) to show that they

are indeed correct. In this chapter, we will focus on five of the common types of

algorithms used to solve problems. For many problems, it is quite likely that at

least one of these methods will work. Specifically, for each type of algorithm we

will

 See the general approach.

 Look at several examples (the exercises at the end of the chapter provide

many more examples).

 Discuss, in general terms, the time and space complexity, where appropriate.

10.1. Greedy Algorithms

The first type of algorithm we will examine is the greedy algorithm. We have

already seen three greedy algorithms in Chapter 9: Dijkstra's, Prim's, and

Kruskal's algorithms. Greedy algorithms work in phases. In each phase, a decision

is made that appears to be good, without regard for future consequences.

Generally, this means that some local optimum is chosen. This "take what you can

get now" strategy is the source of the name for this class of algorithms. When

the algorithm terminates, we hope that the local optimum is equal to the global

optimum. If this is the case, then the algorithm is correct; otherwise, the

algorithm has produced a suboptimal solution. If the absolute best answer is not

required, then simple greedy algorithms are sometimes used to generate

approximate answers, rather than using the more complicated algorithms generally

required to generate an exact answer.

There are several real-life examples of greedy algorithms. The most obvious is

the coin-changing problem. To make change in U.S. currency, we repeatedly

dispense the largest denomination. Thus, to give out seventeen dollars and sixty-

one cents in change, we give out a ten-dollar bill, a five-dollar bill, two one-

dollar bills, two quarters, one dime, and one penny. By doing this, we are

guaranteed to minimize the number of bills and coins. This algorithm does not

work in all monetary systems, but fortunately, we can prove that it does work in

the American monetary system. Indeed, it works even if two-dollar bills and

Next ChapterReturn to Table of ContentsPrevious Chapter

页码，1/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

fifty-cent pieces are allowed.

Traffic problems provide an example where making locally optimal choices does not

always work. For example, during certain rush hour times in Miami, it is best to

stay off the prime streets even if they look empty, because traffic will come to

a standstill a mile down the road, and you will be stuck. Even more shocking, it

is better in some cases to make a temporary detour in the direction opposite your

destination in order to avoid all traffic bottlenecks.

In the remainder of this section, we will look at several applications that use

greedy algorithms. The first application is a simple scheduling problem.

Virtually all scheduling problems are either NP-complete (or of similar difficult

complexity) or are solvable by a greedy algorithm. The second application deals

with file compression and is one of the earliest results in computer science.

Finally, we will look at an example of a greedy approximation algorithm.

10.1.1. A Simple Scheduling Problem

We are given jobs j

1

, j

2

, . . . , j

n

, all with known running times t

1

, t

2

, . . .

, t

n

, respectively. We have a single processor. What is the best way to schedule

these jobs in order to minimize the average completion time? In this entire

section, we will assume nonpreemptive scheduling: Once a job is started, it must

run to completion.

As an example, suppose we have the four jobs and associated running times shown

in Figure 10.1. One possible schedule is shown in Figure 10.2. Because j

1

finishes in 15 (time units), j

2

 in 23, j

3

 in 26, and j

4

 in 36, the average

completion time is 25. A better schedule, which yields a mean completion time of

17.75, is shown in Figure 10.3.

The schedule given in Figure 10.3 is arranged by shortest job first. We can show

that this will always yield an optimal schedule. Let the jobs in the schedule be

j

i1

, j

i2

, . . . , j

in

. The first job finishes in time t

i1

. The second job finishes

after t

i1

 + t

i2

, and the third job finishes after t

i1

 + t

i2

 + t

i3

. From this, we

see that the total cost, C, of the schedule is

(10.1)

(10.2)

Job Time

页码，2/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

 j
1 15

 j
2 8

 j
3 3

 j
4 10

Figure 10.1 Jobs and times

Figure 10.2 Schedule #1

Figure 10.3 Schedule #2 (optimal)

Notice that in Equation (10.2), the first sum is independent of the job ordering,

so only the second sum affects the total cost. Suppose that in an ordering there

exists some x > y such that t

ix

 < t

iy

. Then a calculation shows that by swapping

j

ix

 and j

iy

, the second sum increases, decreasing the total cost. Thus, any

schedule of jobs in which the times are not monotonically nonincreasing must be

suboptimal. The only schedules left are those in which the jobs are arranged by

smallest running time first, breaking ties arbitrarily.

This result indicates the reason the operating system scheduler generally gives

precedence to shorter jobs.

The Multiprocessor Case

We can extend this problem to the case of several processors. Again we have jobs

j

1

, j

2

, . . . , j

n

, with associated running times t

1

, t

2

, . . . , t

n

, and a number

P of processors. We will assume without loss of generality that the jobs are

ordered, shortest running time first. As an example, suppose P = 3, and the jobs

are as shown in Figure 10.4.

Figure 10.5 shows an optimal arrangement to minimize mean completion time. Jobs

j

1

, j

4

, and j

7

 are run on Processor 1. Processor 2 handles j2, j5, and j8, and

Processor 3 runs the remaining jobs. The total time to completion is 165, for an

页码，3/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

average of .

The algorithm to solve the multiprocessor case is to start jobs in order, cycling

through processors. It is not hard to show that no other ordering can do better,

although if the number of processors P evenly divides the number of jobs n, there

are many optimal orderings. This is obtained by, for each 0 i <n/P, placing

each of the jobs j

iP+1

 through j

(i+1)P

 on a different processor. In our case,

Figure 10.6 shows a second optimal solution.

Job Time

 j
1

3

 j
2 5

 j
3 6

 j
4

10

 j
5

11

 j
6

14

 j
7 15

 j
8 18

 j
9

20

Figure 10.4 Jobs and times

Figure 10.5 An optimal solution for the multiprocessor case

Even if P does not divide n exactly, there can still be many optimal solutions,

even if all the job times are distinct. We leave further investigation of this as

an exercise.

页码，4/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Minimizing the Final Completion Time

We close this section by considering a very similar problem. Suppose we are only

concerned with when the last job finishes. In our two examples above, these

completion times are 40 and 38, respectively. Figure 10.7 shows that the minimum

final completion time is 34, and this clearly cannot be improved, because every

processor is always busy.

Although this schedule does not have minimum mean completion time, it has merit

in that the completion time of the entire sequence is earlier. If the same user

owns all these jobs, then this is the preferable method of scheduling. Although

these problems are very similar, this new problem turns out to be NP-complete; it

is just another way of phrasing the knapsack or bin-packing problems, which we

will encounter later in this section. Thus, minimizing the final completion time

is apparently much harder than minimizing the mean completion time.

Figure 10.6 A second optimal solution for the multiprocessor case

Figure 10.7 Minimizing the final completion time

10.1.2. Huffman Codes

In this section, we consider a second application of greedy algorithms, known as

file compression.

The normal ASCII character set consists of roughly 100 "printable" characters.

In order to distinguish these characters, log 100 = 7 bits are required.

页码，5/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Seven bits allow the representation of 128 characters, so the ASCII character
set adds some other "nonprintable" characters. An eighth bit is added as a parity

check. The important point, however, is that if the size of the character set is

C, then log C bits are needed in a standard encoding.

Suppose we have a file that contains only the characters a, e, i, s, t, plus

blank spaces and newlines. Suppose further, that the file has ten a's, fifteen

e's, twelve i's, three s's, four t's, thirteen blanks, and one newline. As the

table in Figure 10.8 shows, this file requires 174 bits to represent, since there

are 58 characters and each character requires three bits.

Character Code Frequency Total Bits

 a 000 10 30

 e 001 15 45

 i 010 12 36

 s 011 3 9

 t 100 4 12

 space 101 3 39

newline 110 1 3

 Total 174

Figure 10.8 Using a standard coding scheme

In real life, files can be quite large. Many of the very large files are output

of some program and there is usually a big disparity between the most frequent

and least frequent characters. For instance, many large data files have an

inordinately large amount of digits, blanks, and newlines, but few q's and x's.

We might be interested in reducing the file size in the case where we are

transmitting it over a slow phone line. Also, since on virtually every machine

disk space is precious, one might wonder if it would be possible to provide a

better code and reduce the total number of bits required.

The answer is that this is possible, and a simple strategy achieves 25 percent

savings on typical large files and as much as 50 to 60 percent savings on many

large data files. The general strategy is to allow the code length to vary from

character to character and to ensure that the frequently occurring characters

have short codes. Notice that if all the characters occur with the same

frequency, then there are not likely to be any savings.

The binary code that represents the alphabet can be represented by the binary

tree shown in Figure 10.9.

页码，6/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

The tree in Figure 10.9 has data only at the leaves. The representation of each

character can be found by starting at the root and recording the path, using a 0

to indicate the left branch and a 1 to indicate the right branch. For instance, s

is reached by going left, then right, and finally right. This is encoded as 011.

This data structure is sometimes referred to as a trie. If character c

i

 is at

depth d

i

 and occurs f

i

 times, then the cost of the code is equal to d

i

 f

i

.

Figure 10.9 Representation of the original code in a tree

Figure 10.10 A slightly better tree

A better code than the one given in Figure 10.9 can be obtained by noticing that

the newline is an only child. By placing the newline symbol one level higher at

its parent, we obtain the new tree in Figure 10.9. This new tree has cost of 173,

but is still far from optimal.

Notice that the tree in Figure 10.10 is a full tree: All nodes either are leaves

or have two children. An optimal code will always have this property, since

otherwise, as we have already seen, nodes with only one child could move up a

level.

If the characters are placed only at the leaves, any sequence of bits can always

be decoded unambiguously. For instance, suppose the encoded string is

0100111100010110001000111. 0 is not a character code, 01 is not a character code,

but 010 represents i, so the first character is i. Then 011 follows, giving a t.

Then 11 follows, which is a newline. The remainder of the code is a, space, t, i,

e, and newline. Thus, it does not matter if the character codes are different

lengths, as long as no character code is a prefix of another character code. Such

an encoding is known as a prefix code. Conversely, if a character is contained in

a nonleaf node, it is no longer possible to guarantee that the decoding will be

unambiguous.

Putting these facts together, we see that our basic problem is to find the full

页码，7/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

binary tree of minimum total cost (as defined above), where all characters are

contained in the leaves. The tree in Figure 10.11 shows the optimal tree for our

sample alphabet. As can be seen in Figure 10.12, this code uses only 146 bits.

Figure 10.11 Optimal prefix code

Character Code Frequency Total Bits

------------------------=--------------

 a 001 10 30

 e 01 15 30

 i 10 12 24

 s 00000 3 15

 t 0001 4 16

 space 11 13 26

newline 00001 1 5

 Total 146

Figure 10.12 Optimal prefix code

Notice that there are many optimal codes. These can be obtained by swapping

children in the encoding tree. The main unresolved question, then, is how the

coding tree is constructed. The algorithm to do this was given by Huffman in

1952. Thus, this coding system is commonly referred to as a Huffman code.

Huffman's Algorithm

Huffman's Algorithm

Throughout this section we will assume that the number of characters is C.

Huffman's algorithm can be described as follows: We maintain a forest of trees.

页码，8/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

The weight of a tree is equal to the sum of the frequencies of its leaves. C - 1

times, select the two trees, T

1

 and T

2

, of smallest weight, breaking ties

arbitrarily, and form a new tree with subtrees T

l

 and T

2

. At the beginning of the

algorithm, there are C single-node trees-one for each character. At the end of

the algorithm there is one tree, and this is the optimal Huffman coding tree.

A worked example will make the operation of the algorithm clear. Figure 10.13

shows the initial forest; the weight of each tree is shown in small type at the

root. The two trees of lowest weight are merged together, creating the forest

shown in Figure 10.14. We will name the new root T1, so that future merges can be

stated unambiguously. We have made s the left child arbitrarily; any tiebreaking

procedure can be used. The total weight of the new tree is just the sum of the

weights of the old trees, and can thus be easily computed. It is also a simple

matter to create the new tree, since we merely need to get a new node, set the

left and right pointers, and record the weight.

Figure 10.13 Initial stage of Huffman's algorithm

Figure 10.14 Huffman's algorithm after the first merge

Figure 10.15 Huffman's algorithm after the second merge

Figure 10.16 Huffman's algorithm after the third merge

Now there are six trees, and we again select the two trees of smallest weight.

页码，9/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

These happen to be T1 and t, which are then merged into a new tree with root T2

and weight 8. This is shown in Figure 10.15. The third step merges T2 and a,

creating T3, with weight 10 + 8 = 18. Figure 10.16 shows the result of this

operation.

After the third merge is completed, the two trees of lowest weight are the

single-node trees representing i and the blank space. Figure 10.17 shows how

these trees are merged into the new tree with root T4. The fifth step is to merge

the trees with roots e and T3, since these trees have the two smallest weights.

The result of this step is shown in Figure 10.18.

Finally, the optimal tree, which was shown in Figure 10.11, is obtained by

merging the two remaining trees. Figure 10.19 shows this optimal tree, with root

T6.

Figure 10.17 Huffman's algorithm after the fourth merge

Figure 10.18 Huffman's algorithm after the fifth merge

页码，10/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.19 Huffman's algorithm after the final merge

We will sketch the ideas involved in proving that Huffman's algorithm yields an

optimal code; we will leave the details as an exercise. First, it is not hard to

show by contradiction that the tree must be full, since we have already seen how

a tree that is not full is improved.

Next, we must show that the two least frequent characters and must be

the two deepest nodes (although other nodes may be as deep). Again, this is easy

to show by contradiction, since if either or is not a deepest node, then

there must be some that is (recall that the tree is full). If is less

frequent than , then we can improve the cost by swapping them in the tree.

We can then argue that the characters in any two nodes at the same depth can be

swapped without affecting optimality. This shows that an optimal tree can always

be found that contains the two least frequent symbols as siblings; thus the first

step is not a mistake.

The proof can be completed by using an induction argument. As trees are merged,

we consider the new character set to be the characters in the roots. Thus, in our

example, after four merges, we can view the character set as consisting of e and

the metacharacters T3 and T4. This is probably the trickiest part of the proof;

you are urged to fill in all of the details.

The reason that this is a greedy algorithm is that at each stage we perform a

merge without regard to global considerations. We merely select the two smallest

trees.

If we maintain the trees in a priority queue, ordered by weight, then the running

time is O(C log C), since there will be one build_heap, 2C - 2 delete_mins, and C

- 2 inserts, on a priority queue that never has more than C elements. A simple

implementation of the priority queue, using a linked list, would give an O (C

2

)

algorithm. The choice of priority queue implementation depends on how large C is.

In the typical case of an ASCII character set, C is small enough that the
quadratic running time is acceptable. In such an application, virtually all the

running time will be spent on the disk I/O required to read the input file and

write out the compressed version.

There are two details that must be considered. First, the encoding information

must be transmitted at the start of the compressed file, since otherwise it will

be impossible to decode. There are several ways of doing this; see Exercise 10.4.

For small files, the cost of transmitting this table will override any possible

savings in compression, and the result will probably be file expansion. Of

course, this can be detected and the original left intact. For large files, the

size of the table is not significant.

The second problem is that as described, this is a two-pass algorithm. The first

pass collects the frequency data and the second pass does the encoding. This is

obviously not a desirable property for a program dealing with large files. Some

页码，11/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

alternatives are described in the references.

10.1.3. Approximate Bin Packing

In this section, we will consider some algorithms to solve the bin packing

problem. These algorithms will run quickly but will not necessarily produce

optimal solutions. We will prove, however, that the solutions that are produced

are not too far from optimal.

We are given n items of sizes s

1

, s

2

, . . . , s

n

. All sizes satisfy 0 < s

i

 1.

The problem is to pack these items in the fewest number of bins, given that each

bin has unit capacity. As an example, Figure 10.20 shows an optimal packing for

an item list with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.

Figure 10.20 Optimal packing for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

There are two versions of the bin packing problem. The first version is on-line

bin packing. In this version, each item must be placed in a bin before the next

item can be processed. The second version is the off-line bin packing problem. In

an off-line algorithm, we do not need to do anything until all the input has been

read. The distinction between on-line and off-line algorithms was discussed in

Section 8.2.

On-line Algorithms

The first issue to consider is whether or not an on-line algorithm can actually

always give an optimal answer, even if it is allowed unlimited computation.

Remember that even though unlimited computation is allowed, an on-line algorithm

must place an item before processing the next item and cannot change its

decision.

To show that an on-line algorithm cannot always give an optimal solution, we will

give it particularly difficult data to work on. Consider an input sequence I

1

 of

m small items of weight followed by m large items of weight , 0 <

< 0.01. It is clear that these items can be packed in m bins if we place one

small item and one large item in each bin. Suppose there were an optimal on-line

algorithm A that could perform this packing. Consider the operation of algorithm

A on the sequence I

2

, consisting of only m small items of weight . I

2

can be

页码，12/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

packed in [m/2] bins. However, A will place each item in a separate bin, since A

must yield the same results on I

2

 as it does for the first half of I

1

, since the

first half of I

1

 is exactly the same input as I

2

. This means that A will use

twice as many bins as is optimal for I

2

. What we have proven is that there is no

optimal algorithm for on-line bin packing.

What the argument above shows is that an on-line algorithm never knows when the

input might end, so any performance guarantees it provides must hold at every

instant throughout the algorithm. If we follow the foregoing strategy, we can

prove the following.

THEOREM 10.1.

There are inputs that force any on-line bin-packing algorithm to use at least

the optimal number of bins.

PROOF:

Suppose otherwise, and suppose for simplicity that m is even. Consider any on-

line algorithm A running on the input sequence I

1

, above. Recall that this

sequence consists of m small items followed by m large items. Let us consider

what the algorithm A has done after processing the mth item. Suppose A has

already used b bins. At this point in the algorithm, the optimal number of bins

is m/2, because we can place two elements in each bin. Thus we know that

, by our assumption of a performance guarantee.

Now consider the performance of algorithm A after all items have been packed. All

bins created after the bth bin must contain exactly one item, since all small

items are placed in the first b bins, and two large items will not fit in a bin.

Since the first b bins can have at most two items each, and the remaining bins

have one item each, we see that packing 2m items will require at least 2m - b

bins. Since the 2m items can be optimally packed using m bins, our performance

guarantee assures us that .

Figure 10.21 Next fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

The first inequality implies that , and the second inequality implies

页码，13/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

that , which is a contradiction. Thus, no on-line algorithm can

guarantee that it will produce a packing with less than the optimal number of

bins.

There are three simple algorithms that guarantee that the number of bins used is

no more than twice optimal. There are also quite a few more complicated

algorithms with better guarantees.

Next Fit

Probably the simplest algorithm is next fit. When processing any item, we check

to see whether it fits in the same bin as the last item. If it does, it is placed

there; otherwise, a new bin is created. This algorithm is incredibly simple to

implement and runs in linear time. Figure 10.21 shows the packing produced for

the same input as Figure 10.20.

Not only is next fit simple to program, its worst-case behavior is also easy to

analyze.

THEOREM 10.2.

Let m be the optimal number of bins required to pack a list I of items. Then next

fit never uses more than 2m bins. There exist sequences such that next fit uses

2m - 2 bins.

PROOF:

Consider any adjacent bins B

j

 and B

j + 1.

 The sum of the sizes of all items in B

j

and B

j + 1

 must be larger than 1, since otherwise all of these items would have

been placed in B

j.

 If we apply this result to all pairs of adjacent bins, we see

that at most half of the space is wasted. Thus next fit uses at most twice the

number of bins.

To see that this bound is tight, suppose that the n items have size s

i

 = 0.5 if i

is odd and s

i

 = 2/n if i is even. Assume n is divisible by 4. The optimal

packing, shown in Figure 10.22, consists of n/4 bins, each containing 2 elements

of size 0.5, and one bin containing the n/2 elements of size 2/n, for a total of

(n/4) + 1. Figure 10.23 shows that next fit uses n/2 bins. Thus, next fit can be

forced to use almost twice as many bins as optimal.

页码，14/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.22 Optimal packing for 0.5, 2/n, 0.5, 2/n, 0.5, 2/n, . . .

Figure 10.23 Next fit packing for 0.5, 2/n, 0.5, 2/n, 0.5, 2/n, . . .

First Fit

Although next fit has a reasonable performance guarantee, it performs poorly in

practice, because it creates new bins when it does not need to. In the sample

run, it could have placed the item of size 0.3 in either B

1

 or B

2

, rather than

create a new bin.

The first fit strategy is to scan the bins in order and place the new item in the

first bin that is large enough to hold it. Thus, a new bin is created only when

the results of previous placements have left no other alternative. Figure 10.24

shows the packing that results from first fit on our standard input.

A simple method of implementing first fit would process each item by scanning

down the list of bins sequentially. This would take O(n

2

). It is possible to

implement first fit to run in O(n log n); we leave this as an exercise.

A moment's thought will convince you that at any point, at most one bin can be

more than half empty, since if a second bin were also half empty, its contents

would fit into the first bin. Thus, we can immediately conclude that first fit

guarantees a solution with at most twice the optimal number of bins.

页码，15/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.24 First fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

On the other hand, the bad case that we used in the proof of next fit's

performance bound does not apply for first fit. Thus, one might wonder if a

better bound can be proven. The answer is yes, but the proof is complicated.

THEOREM 10.3.

Let m be the optimal number of bins required to pack a list I of items. Then

first fit never uses more than bins. There exist sequences such that first

fit uses bins.

PROOF:

See the references at the end of the chapter.

An example where first fit does almost as poorly as the previous theorem would

indicate is shown in Figure 10.25. The input consists of 6m items of size ,

followed by 6m items of size , followed by 6m items of size . One

simple packing places one item of each size in a bin and requires 6m bins. First

fit requires 10m bins.

When first fit is run on a large number of items with sizes uniformly distributed

between 0 and 1, empirical results show that first fit uses roughly 2 percent

more bins than optimal. In many cases, this is quite acceptable.

页码，16/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.25 A case where first fit uses 10m bins instead of 6m

Figure 10.26 Best fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

First Fit

Although next fit has a reasonable performance guarantee, it performs poorly in

practice, because it creates new bins when it does not need to. In the sample

run, it could have placed the item of size 0.3 in either B

1

 or B

2

, rather than

create a new bin.

The first fit strategy is to scan the bins in order and place the new item in the

first bin that is large enough to hold it. Thus, a new bin is created only when

the results of previous placements have left no other alternative. Figure 10.24

shows the packing that results from first fit on our standard input.

A simple method of implementing first fit would process each item by scanning

down the list of bins sequentially. This would take O(n

2

). It is possible to

implement first fit to run in O(n log n); we leave this as an exercise.

A moment's thought will convince you that at any point, at most one bin can be

more than half empty, since if a second bin were also half empty, its contents

would fit into the first bin. Thus, we can immediately conclude that first fit

guarantees a solution with at most twice the optimal number of bins.

Figure 10.24 First fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

On the other hand, the bad case that we used in the proof of next fit's

performance bound does not apply for first fit. Thus, one might wonder if a

页码，17/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

better bound can be proven. The answer is yes, but the proof is complicated.

THEOREM 10.3.

Let m be the optimal number of bins required to pack a list I of items. Then

first fit never uses more than bins. There exist sequences such that first

fit uses bins.

PROOF:

See the references at the end of the chapter.

An example where first fit does almost as poorly as the previous theorem would

indicate is shown in Figure 10.25. The input consists of 6m items of size ,

followed by 6m items of size , followed by 6m items of size . One

simple packing places one item of each size in a bin and requires 6m bins. First

fit requires 10m bins.

When first fit is run on a large number of items with sizes uniformly distributed

between 0 and 1, empirical results show that first fit uses roughly 2 percent

more bins than optimal. In many cases, this is quite acceptable.

Figure 10.25 A case where first fit uses 10m bins instead of 6m

Figure 10.26 Best fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

页码，18/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

10.2. Divide and Conquer

Another common technique used to design algorithms is divide and conquer. Divide

and conquer algorithms consist of two parts:

Divide: Smaller problems are solved recursively (except, of course, base cases).

Conquer: The solution to the original problem is then formed from the solutions

to the subproblems.

Traditionally, routines in which the text contains at least two recursive calls

are called divide and conquer algorithms, while routines whose text contains only

one recursive call are not. We generally insist that the subproblems be disjoint

(that is, essentially nonoverlapping). Let us review some of the recursive

algorithms that have been covered in this text.

We have already seen several divide and conquer algorithms. In Section 2.4.3, we

saw an O (n log n) solution to the maximum subsequence sum problem. In Chapter 4,

we saw linear-time tree traversal strategies. In Chapter 7, we saw the classic

examples of divide and conquer, namely mergesort and quicksort, which have O (n

log n) worst-case and average-case bounds, respectively.

We have also seen several examples of recursive algorithms that probably do not

classify as divide and conquer, but merely reduce to a single simpler case. In

Section 1.3, we saw a simple routine to print a number. In Chapter 2, we used

recursion to perform efficient exponentiation. In Chapter 4, we examined simple

search routines for binary search trees. In Section 6.6, we saw simple recursion

used to merge leftist heaps. In Section 7.7, an algorithm was given for selection

that takes linear average time. The disjoint set find operation was written

recursively in Chapter 8. Chapter 9 showed routines to recover the shortest path

in Dijkstra's algorithm and other procedures to perform depth-first search in

graphs. None of these algorithms are really divide and conquer algorithms,

because only one recursive call is performed.

We have also seen, in Section 2.4, a very bad recursive routine to compute the

Fibonacci numbers. This could be called a divide and conquer algorithm, but it is

terribly inefficient, because the problem really is not divided at all.

In this section, we will see more examples of the divide and conquer paradigm.

Our first application is a problem in computational geometry. Given n points in a

plane, we will show that the closest pair of points can be found in O(n log n)

time. The exercises describe some other problems in computational geometry which

can be solved by divide and conquer. The remainder of the section shows some

extremely interesting, but mostly theoretical, results. We provide an algorithm

which solves the selection problem in O(n) worst-case time. We also show that 2

n-bit numbers can be multiplied in o(n

2

) operations and that two n x n matrices

can be multiplied in o(n

3

) operations. Unfortunately, even though these

algorithms have better worst-case bounds than the conventional algorithms, none

are practical except for very large inputs.

10.2.1. Running Time of Divide and Conquer Algorithms

页码，19/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

10.2.1. Running Time of Divide and Conquer Algorithms

All the efficient divide and conquer algorithms we will see divide the problems

into subproblems, each of which is some fraction of the original problem, and

then perform some additional work to compute the final answer. As an example, we

have seen that mergesort operates on two problems, each of which is half the size

of the original, and then uses O(n) additional work. This yields the running time

equation (with appropriate initial conditions)

T(n) = 2T(n/2) + O(n)

We saw in Chapter 7 that the solution to this equation is O(n log n). The

following theorem can be used to determine the running time of most divide and

conquer algorithms.

THEOREM 10.6.

The solution to the equation T(n) = aT(n/b) + (n

k

), where a 1 and b > 1,

is

PROOF:

Following the analysis of mergesort in Chapter 7, we will assume that n is a

power of b; thus, let n = b

m

. Then n/b = b

m-l

 and n

k

 = (b

m

)

k

 = b

mk

 = b

km

 = (b

k

)

m

.

Let us assume T(1) = 1, and ignore the constant factor in (n

k

). Then we have

T(b
m

) = aT(b
m-l

)+(b
k

)
m

If we divide through by a

m

, we obtain the equation

(10.3)

We can apply this equation for other values of m, obtaining

(10.4)

页码，20/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

(10.5)

(10.6)

We use our standard trick of adding up the telescoping equations (10.3) through (10.6). Virtually

all the terms on the left cancel the leading terms on the right, yielding

(10.7)

(10.8)

Thus

(10.9)

If a > b

k

, then the sum is a geometric series with ratio smaller than 1. Since the sum of

infinite series would converge to a constant, this finite sum is also bounded by a constant, and

thus Equation (10.10) applies:

T(n) = O(a

m

) = O(a

logb

n

) O = O(n

logb a

)

(10.10)

If a = b

k

, then each term in the sum is 1. Since the sum contains 1 + log

b

n terms and a = b

k

implies that log

b

 a = k,

T(n) = O(a

m

log

b

n) = O(n

log

b

a

log

b

n) = O(n

k

log

b

n)

= O (n

k

log n)

页码，21/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

(10.11)

Finally, if a < b

k

, then the terms in the geometric series are larger than 1, and the second

formula in Section 1.2.3 applies. We obtain

(10.12)

proving the last case of the theorem.

As an example, mergesort has a = b = 2 and k = 1. The second case applies, giving the answer O(n

log n). If we solve three problems, each of which is half the original size, and combine the

solutions with O(n) additional work, then a = 3, b = 2 and k = 1. Case 1 applies here, giving a

bound of O(n

log

2

3

) = O(n

1.59

). An algorithm that solved three half-sized problems, but required O

(n

2

) work to merge the solution, would have an O(n

2

) running time, since the third case would

apply.

There are two important cases that are not covered by Theorem 10.6. We state two more theorems,

leaving the proofs as exercises. Theorem 10.7 generalizes the previous theorem.

THEOREM 10.7.

The solution to the equation T(n) = aT(n/b) + (n

k

log

p

n), where a 1, b > 1, and p

0 is

THEOREM 10.8.

, then the solution to the equation is T(n) = O(n).

10.2.2. Closest-Points Problem

The input to our first problem is a list P of points in a plane. If p

l

 = (x

1

, y

1

) and p

2

 = (x

2

,

y

2

), then the Euclidean distance between pl and p2 is [(x
1

 - x

2

)

2

 + (y

l

 - y

2

)

2

]

l/2

. We are

required to find the closest pair of points. It is possible that two points have the same

position; in that case that pair is the closest, with distance zero.

If there are n points, then there are n (n - 1)/2 pairs of distances. We can check all of these,

obtaining a very short program, but at the expense of an O(n

2

) algorithm. Since this approach is

just an exhaustive search, we should expect to do better.

Let us assume that the points have been sorted by x coordinate. At worst, this adds O(n log n) to

the final time bound. Since we will show an O(n log n) bound for the entire algorithm, this sort

is essentially free, from a complexity standpoint.

页码，22/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.29 shows a small sample point set P. Since the points are sorted by x coordinate, we

can draw an imaginary vertical line that partitions the points set into two halves, P

l

 and P

r

.

This is certainly simple to do. Now we have almost exactly the same situation as we saw in the

maximum subsequence sum problem in Section 2.4.3. Either the closest points are both in P

l

, or

they are both in P

r

, or one is in P

l

 and the other is in P

r

. Let us call these distances d

l

, d

r

,

and d

c

. Figure 10.30 shows the partition of the point set and these three distances.

We can compute d

l

 and dr recursively. The problem, then, is to compute dc. Since we would like

an O(n log n) solution, we must be able to compute d

c

 with only O(n) additional work. We have

already seen that if a procedure consists of two half-sized recursive calls and O(n) additional

work, then the total time will be O(n log n).

Let = min(d

l

, d

r

). The first observation is that we only need to compute d

c

 if d

c

 improves

on . If d

c

 is such a distance, then the two points that define d

c

 must be within of the

dividing line; we will refer to this area as a strip. As shown in Figure 10.31, this observation

limits the number of points that need to be considered (in our case, = d

r

).

There are two strategies that can be tried to compute d

c

. For large point sets that are uniformly

distributed, the number of points that are expected to be in the strip is very small. Indeed, it

is easy to argue that only points are in the strip on average. Thus, we could perform a

brute force calculation on these points in O(n) time. The pseudocode in Figure 10.32 implements

this strategy, assuming the C convention that the points are indexed starting at 0.

Figure 10.29 A small point set

页码，23/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.30 P partitioned into P

1

 and P2; shortest distances are shown

Figure 10.31 Two-lane strip, containing all points considered for d

c

 strip

/* Points are all in the strip */

for(i=0; i<NUM_POINTS_IN_STRIP; i++)

for(j=i+1; j<NUM_POINTS_IN_STRIP; j++)

if(dist(p

i

,p

j

) <)

 = dist(p

i

,p

j

);

Figure 10.32 Brute force calculation of min(, d

c

)

/* Points are all in the strip and sorted by y coordinate */

for(i=0; i<NUM_POINTS_IN_STRIP; i++)

页码，24/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

for(j=i+1; j<NUM_POINTS_IN_STRIP; j++)

if (pi and pj 's coordinates differ by more than)

break; /* goto next pi */

else

if(dist(p

i

, p

j

) <)

 = dist(p

i

, p

j

);

Figure 10.33 Refined calculation of min(, d

c

)

In the worst case, all the points could be in the strip, so this strategy does not always work in

linear time. We can improve this algorithm with the following observation: The y coordinates of

the two points that define d

c

 can differ by at most . Otherwise, d

c

> . Suppose that the

points in the strip are sorted by their y coordinates. Therefore, if p

i

 and p

j

's y coordinates

differ by more than , then we can proceed to p

i + l

. This simple modification is implemented

in Figure 10.33.

This extra test has a significant effect on the running time, because for each p

i

 only a few

points p

j

 are examined before p

i

's and p

j

's y coordinates differ by more than and force an

exit from the inner for loop. Figure 10.34 shows, for instance, that for point p

3

, only the two

points p

4

 and p

5

 lie in the strip within vertical distance.

Figure 10.34 Only p

4

 and p5 are considered in the second for loop

页码，25/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.35 At most eight points fit in the rectangle; there are two coordinates shared by two

points each

In the worst case, for any point p

i

, at most 7 points p

j

 are considered. This is because these

points must lie either in the by square in the left half of the strip or in the

by square in the right half of the strip. On the other hand, all the points in each by

 square are separated by at least . In the worst case, each square contains four points,

one at each corner. One of these points is p

i

, leaving at most seven points to be considered.

This worst-case situation is shown in Figure 10.35. Notice that even though p

l2

 and p

r1

 have the

same coordinates, they could be different points. For the actual analysis, it is only important

that the number of points in the by 2 rectangle be O(1), and this much is certainly

clear.

Because at most seven points are considered for each p

i

, the time to compute a d

c

 that is better

than is O(n). Thus, we appear to have an O(n log n) solution to the closest-points problem,

based on the two half-sized recursive calls plus the linear extra work to combine the two

results. However, we do not quite have an O (n log n) solution yet.

The problem is that we have assumed that a list of points sorted by y coordinate is available. If

we perform this sort for each recursive call, then we have O(n log n) extra work: this gives an O

(n log

2

 n) algorithm. This is not all that bad, especially when compared to the brute force O

(n

2

). However, it is not hard to reduce the work for each recursive call to O(n), thus ensuring

an O(n log n) algorithm.

We will maintain two lists. One is the point list sorted by x coordinate, and the other is the

point list sorted by y coordinate. We will call these lists P and Q, respectively. These can be

obtained by a preprocessing sorting step at cost O(n log n) and thus does not affect the time

bound. P

l

 and Q

l

 are the lists passed to the left-half recursive call, and P

r

 and Q

r

 are the

lists passed to the right-half recursive call. We have already seen that P is easily split in the

middle. Once the dividing line is known, we step through Q sequentially, placing each element in

Q

l

 or Q

r

, as appropriate. It is easy to see that Q

l

 and Q

r

 will be automatically sorted by y

coordinate. When the recursive calls return, we scan through the Q list and discard all the

points whose x coordinates are not within the strip. Then Q contains only points in the strip,

and these points are guaranteed to be sorted by their y coordinates.

页码，26/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

This strategy ensures that the entire algorithm is O (n log n), because only O (n) extra work is

performed.

10.2.3. The Selection Problem

The selection problem requires us to find the kth smallest element in a list S of n elements. Of

particular interest is the special case of finding the median. This occurs when k = n/2 .

In Chapters 1, 6, 7 we have seen several solutions to the selection problem. The solution in

Chapter 7 uses a variation of quicksort and runs in O(n) average time. Indeed, it is described in

Hoare's original paper on quicksort.

Although this algorithm runs in linear average time, it has a worst case of O (n

2

). Selection can

easily be solved in O(n log n) worst-case time by sorting the elements, but for a long time it

was unknown whether or not selection could be accomplished in O(n) worst-case time. The

quickselect algorithm outlined in Section 7.7.6 is quite efficient in practice, so this was

mostly a question of theoretical interest.

Recall that the basic algorithm is a simple recursive strategy. Assuming that n is larger than

the cutoff point where elements are simply sorted, an element v, known as the pivot, is chosen.

The remaining elements are placed into two sets, S

1

 and S

2

. S

1

 contains elements that are

guaranteed to be no larger than v, and S

2

 contains elements that are no smaller than v. Finally,

if k |S

1

|, then the kth smallest element in S can be found by recursively computing the kth

smallest element in S

1

. If k = |S

1

| + 1, then the pivot is the kth smallest element. Otherwise,

the kth smallest element in S is the (k - |S

1

| -1)st smallest element in S

2

. The main difference

between this algorithm and quicksort is that there is only one subproblem to solve instead of

two.

In order to obtain a linear algorithm, we must ensure that the subproblem is only a fraction of

the original and not merely only a few elements smaller than the original. Of course, we can

always find such an element if we are willing to spend some time to do so. The difficult problem

is that we cannot spend too much time finding the pivot.

For quicksort, we saw that a good choice for pivot was to pick three elements and use their

median. This gives some expectation that the pivot is not too bad, but does not provide a

guarantee. We could choose 21 elements at random, sort them in constant time, use the 11th

largest as pivot, and get a pivot that is even more likely to be good. However, if these 21

elements were the 21 largest, then the pivot would still be poor. Extending this, we could use up

to O (n / log n) elements, sort them using heapsort in O(n) total time, and be almost certain,

from a statistical point of view, of obtaining a good pivot. In the worst case, however, this

does not work because we might select the O (n / log n) largest elements, and then the pivot

would be the [n - O(n / log n)]th largest element, which is not a constant fraction of n.

The basic idea is still useful. Indeed, we will see that we can use it to improve the expected

number of comparisons that quickselect makes. To get a good worst case, however, the key idea is

to use one more level of indirection. Instead of finding the median from a sample of random

elements, we will find the median from a sample of medians.

The basic pivot selection algorithm is as follows:

1. Arrange the n elements into n/5 groups of 5 elements, ignoring the (at most four)

extra elements.

页码，27/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

2. Find the median of each group. This gives a list M of n/5 medians.

3. Find the median of M. Return this as the pivot, v.

We will use the term median-of-median-of-five partitioning to describe the quickselect algorithm

that uses the pivot selection rule given above. We will now show that median-of-median-of-five

partitioning guarantees that each recursive subproblem is at most roughly 70 percent as large as

the original. We will also show that the pivot can be computed quickly enough to guarantee an O

(n) running time for the entire selection algorithm.

Let us assume for the moment that n is divisible by 5, so there are no extra elements. Suppose

also that n/5 is odd, so that the set M contains an odd number of elements. This provides some

symmetry, as we shall see. We are thus assuming, for convenience, that n is of the form 10k + 5.

We will also assume that all the elements are distinct. The actual algorithm must make sure to

handle the case where this is not true. Figure 10.36 shows how the pivot might be chosen when n =

45.

In Figure 10.36, v represents the element which is selected by the algorithm as pivot. Since v is

the median of nine elements, and we are assuming that all elements are distinct, there must be

four medians that are larger than v and four that are smaller. We denote these by L and S,

respectively. Consider a group of five elements with a large median (type L). The median of the

group is smaller than two elements in the group and larger than two elements in the group. We

will let H represent the huge elements. These are elements that are known to be larger than a

large median. Similarly, T represents the tiny elements, which are smaller than a small median.

There are 10 elements of type H: Two are in each of the groups with an L type median, and two

elements are in the same group as v. Similarly, there are 10 elements of type T.

Figure 10.36 How the pivot is chosen

Elements of type L or H are guaranteed to be larger than v, and elements of type S or T are

guaranteed to be smaller than v. There are thus guaranteed to be 14 large and 14 small elements

in our problem. Therefore, a recursive call could be on at most 45 - 14 - 1 = 30 elements.

Let us extend this analysis to general n of the form 10k + 5. In this case, there are k elements

of type L and k elements of type S . There are 2k + 2 elements of type H, and also 2k + 2

elements of type T. Thus, there are 3k + 2 elements that are guaranteed to be larger than v and

3k + 2 elements that are guaranteed to be smaller. Thus, in this case, the recursive call can

contain at most 7k + 2 < 0.7n elements. If n is not of the form 10k + 5, similar arguments can be

页码，28/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

made without affecting the basic result.

It remains to bound the running time to obtain the pivot element. There are two basic steps. We

can find the median of five elements in constant time. For instance, it is not hard to sort five

elements in eight comparisons. We must do this n/5 times, so this step takes O(n) time.

We must then compute the median of a group of n/5 elements. The obvious way to do this

is to sort the group and return the element in the middle. But this takes O(n/5 log

n/5) = O(n log n) time, so this does not work. The solution is to call the selection

algorithm recursively on the n/5 elements.

This completes the description of the basic algorithm. There are still some details that need to

be filled in if an actual implementation is desired. For instance, duplicates must be handled

correctly, and the algorithm needs a cutoff large enough to ensure that the recursive calls make

progress. There is quite a large amount of overhead involved, and this algorithm is not practical

at all, so we will not describe any more of the details that need to be considered. Even so, from

a theoretical standpoint, the algorithm is a major breakthrough, because, as the following

theorem shows, the running time is linear in the worst case.

THEOREM 10.9.

The running time of quickselect using median-of-median-of-five partitioning is O(n).

PROOF:

The algorithm consists of two recursive calls of size 0.7n and 0.2n, plus linear extra work. By

Theorem 10.8, the running time is linear.

Reducing the Average Number of Comparisons

Reducing the Average Number of Comparisons

Divide and conquer can also be used to reduce the expected number of comparisons required by the

selection algorithm. Let us look at a concrete example. Suppose we have a group S of 1,000

numbers and are looking for the 100th smallest number, which we will call x. We choose a subset

S' of S consisting of 100 numbers. We would expect that the value of x is similar in size to the

10th smallest number in S'. More specifically, the fifth smallest number in S' is almost

certainly less than x, and the 15th smallest number in S' is almost certainly greater than x.

More generally, a sample S' of s elements is chosen from the n elements. Let be some number,

which we will choose later so as to minimize the average number of comparisons used by the

procedure. We find the (v

1

 = ks/n -)th and (v2 = ks/n +)th smallest elements in S'.

Almost certainly, the kth smallest element in S will fall between v

1

 and v

2

, so we are left with

a selection problem on 2 elements. With low probability, the kth smallest element does not

fall in this range, and we have considerable work to do. However, with a good choice of s and

, we can ensure, by the laws of probability, that the second case does not adversely affect

the total work.

页码，29/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

If an analysis is performed, we find that if s = n

2/3

log

1/3

n and = n

1/3

log

2/3

n, then the

expected number of comparisons is n + k + O(n

2/3

log

1/3

n), which is optimal except for the low-

order term. (If k > n/2, we can consider the symmetric problem of finding the (n - k)th largest

element.)

Most of the analysis is easy to do. The last term represents the cost of performing the two

selections to determine v

1

 and v

2

. The average cost of the partitioning, assuming a reasonably

clever strategy, is equal to n plus the expected rank of v

2

in S, which is n + k + O(n /s). If

the kth element winds up in S', the cost of finishing the algorithm is equal to the cost of

selection on S', namely O(s). If the kth smallest element doesn't wind up in S', the cost is O

(n). However, s and have been chosen to guarantee that this happens with very low

probability o(1/n), so the expected cost of this possibility is o(1), which is a term that goes

to zero as n gets large. An exact calculation is left as Exercise 10.21.

This analysis shows that finding the median requires about 1.5n comparisons on average. Of

course, this algorithm requires some floating-point arithmetic to compute s, which can slow down

the algorithm on some machines. Even so, experiments have shown that if correctly implemented,

this algorithm compares favorably with the quickselect implementation in Chapter 7.

10.2.4. Theoretical Improvements for Arithmetic Problems

In this section we describe a divide and conquer algorithm that multiplies two n-digit numbers.

Our previous model of computation assumed that multiplication was done in constant time, because

the numbers were small. For large numbers, this assumption is no longer valid. If we measure

multiplication in terms of the size of numbers being multiplied, then the natural multiplication

algorithm takes quadratic time. The divide and conquer algorithm runs in subquadratic time. We

also present the classic divide and conquer algorithm that multiplies two n by n matrices in

subcubic time.

Multiplying Integers

Matrix Multiplication

Multiplying Integers

Suppose we want to multiply two n-digit numbers x and y. If exactly one of x and y is negative,

then the answer is negative; otherwise it is positive. Thus, we can perform this check and then

assume that x, y 0. The algorithm that almost everyone uses when multiplying by hand

requires (n

2

) operations, because each digit in x is multiplied by each digit in y.

If x = 61,438,521 and y = 94,736,407, xy = 5,820,464,730,934,047. Let us break x and y into two

halves, consisting of the most significant and least significant digits, respectively. Then x

l

 =

6,143, x

r

 = 8,521, y

l

 = 9,473, and y

r

 = 6,407. We also have x = x

l

10

4

 + x

r

 and y = y

l

10

4

 + y

r

. It

follows that

xy = x

l

y

l

10

8

 + (x

l

y

r

 + x

r

y

l

)10

4

 + x

r

y

r

Notice that this equation consists of four multiplications, x

l

y

l

, x

l

y

r

, x

r

y

l

, and x

r

y

r

, which are

each half the size of the original problem (n/2 digits). The multiplications by 10

8

 and 10

4

amount to the placing of zeros. This and the subsequent additions add only O(n) additional work.

页码，30/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

If we perform these four multiplications recursively using this algorithm, stopping at an

appropriate base case, then we obtain the recurrence

T(n) = 4T(n/2) + O(n)

From

Theorem 10.6, we see that T(n) = O(n

2

), so, unfortunately, we have not improved the

algorithm. To achieve a subquadratic algorithm, we must use less than four recursive calls. The

key observation is that

x

l

y

r

 + x

r

y

l

 = (x

l

 - x

r

)(y

r

 - y

l

) + x

l

y

l

 + x

r

y

r

Thus, instead of using two multiplications to compute the coefficient of 10

4

, we can use one

multiplication, plus the result of two multiplications that have already been performed. Figure

10.37 shows how only three recursive subproblems need to be solved.

It is easy to see that now the recurrence equation satisfies

T(n) = 3T(n/2) + O(n),

and so we obtain T(n) = O(n

log23

) = O(n

1.59

). To complete the algorithm, we must have a base

case, which can be solved without recursion.

Figure 10.37 The divide and conquer algorithm in action

When both numbers are one-digit, we can do the multiplication by table lookup. If one number has

zero digits, then we return zero. In practice, if we were to use this algorithm, we would choose

the base case to be that which is most convenient for the machine.

Although this algorithm has better asymptotic performance than the standard quadratic algorithm,

it is rarely used, because for small n the overhead is significant, and for larger n there are

even better algorithms. These algorithms also make extensive use of divide and conquer.

页码，31/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Matrix Multiplication

A fundamental numerical problem is the multiplication of two matrices. Figure 10.38 gives a

simple O(n

3

) algorithm to compute C = AB, where A, B, and C are n n matrices. The algorithm

follows directly from the definition of matrix multiplication. To compute C

i

,

j

, we compute the

dot product of the ith row in A with the jth column in B. As usual, arrays begin at index 0.

For a long time it was assumed that (n

3

) was required for matrix multiplication. However, in

the late sixties Strassen showed how to break the (n

3

) barrier. The basic idea of Strassen's

algorithm is to divide each matrix into four quadrants, as shown in Figure 10.39. Then it is easy

to show that

C

1,1

 = A

1,1

B

1,1

 + A

1,2

B

2,1

C

1,2

 = A

1,1

B

1,2

 + A

1,2

B

2,2

C

2,1

 = A

2,1

B

1,1

+ A

2,2

B

2,1

C

2,2

 = A

2,1

B

1,2

 + A

2,2

B

2,2

/* Standard matrix multiplication. Arrays start at 0 */

void

matrix_multiply(matrix A, matrix B, matrix C, unsigned int n)

{

int i, j, k;

for(i=0; i<n; i++) /* Initialization */

for(j=O; j<n; j++)

C[i][j] = 0.0;

for(i=0; i<n; i++)

for(j=0; j<n; j++)

for(k=0; k<n; k++)

C[i][j] += A[i][k] * B[k][j];

}

Figure 10.38 Simple O(n

3

) matrix multiplication

Figure 10.39 Decomposing AB = C into four quadrants

As an example, to perform the multiplication AB

页码，32/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

we define the following eight n/2 by n/2 matrices:

We could then perform eight n/2 by n/2 matrix multiplications and four n/2 by n/2 matrix

additions. The matrix additions take O(n

2

) time. If the matrix multiplications are done

recursively, then the running time satisfies

T(n) = 8T(n/2) + O(n

2

).

From

Theorem 10.6, we see that T(n) = O(n

3

), so we do not have an improvement. As we saw with

integer multiplication, we must reduce the number of subproblems below 8. Strassen used a

strategy similar to the integer multiplication divide and conquer algorithm and showed how to use

only seven recursive calls by carefully arranging the computations. The seven multiplications are

M

1

 = (A

1,2

 - A

2,2

)(B

2,1

 + B

2,2

)

M

2

 = (A

1,1

 + A

2,2

)(B

1,1

 + B

2,2

)

M

3

 = (A

1,1

 - A

2,1

)(B

1,1

 + B

1,2

)

M

4

 = (A

1,1

 + A

1,2

)B

2,2

M

5

 = A

1,1

(B

1,2

 - B

2,2

)

M

6

 = A

2,2

(B

2,1

 - B

1,1

)

M

7

 = (A

2,1

 + A

2,2

)B

1,1

Once the multiplications are performed, the final answer can be obtained with eight more

additions.

C

1,1

 = M

1

 + M

2

 - M

4

 + M

6

C

1,2

 = M

4

 + M

5

C

1,3

 = M

6

 + M

7

C

1,4

 = M

2

 - M

3

 + M

5

 - M

7

It is straightforward to verify that this tricky ordering produces the desired values. The

running time now satisfies the recurrence

T(n) = 7T(n/2) + O(n

2

).

页码，33/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

The solution of this recurrence is T(n) = O(n

log27

) = O(n

2.81

).

As usual, there are details to consider, such as the case when n is not a power of two, but these

are basically minor nuisances. Strassen's algorithm is worse than the straightforward algorithm

until n is fairly large. It does not generalize for the case where the matrices are sparse

(contain many zero entries), and it does not easily parallelize. When run with floating-point

entries, it is less stable numerically than the classic algorithm. Thus, it is has only limited

applicability. Nevertheless, it represents an important theoretical milestone and certainly shows

that in computer science, as in many other fields, even though a problem seems to have an

intrinsic complexity, nothing is certain until proven.

10.3. Dynamic Programming

In the previous section, we have seen that a problem that can be mathematically expressed

recursively can also be expressed as a recursive algorithm, in many cases yielding a significant

performance improvement over a more naïve exhaustive search.

Any recursive mathematical formula could be directly translated to a recursive algorithm, but the

underlying reality is that often the compiler will not do justice to the recursive algorithm, and

an inefficient program results. When we suspect that this is likely to be the case, we must

provide a little more help to the compiler, by rewriting the recursive algorithm as a

nonrecursive algorithm that systematically records the answers to the subproblems in a table. One

technique that makes use of this approach is known as dynamic programming.

10.3.1. Using a Table Instead of Recursion

In Chapter 2, we saw that the natural recursive program to compute the Fibonacci numbers is very

inefficient. Recall that the program shown in Figure 10.40 has a running time T(n) that satisfies

T(n) T(n - 1) + T(n - 2). Since T(n) satisfies the same recurrence relation as the Fibonacci

numbers and has the same initial conditions, T(n) in fact grows at the same rate as the Fibonacci

numbers, and is thus exponential.

On the other hand, since to compute F

n

, all that is needed is F

n-1

 and F

n-2

, we only need to

record the two most recently computed Fibonacci numbers. This yields the O(n) algorithm in Figure

10.41

The reason that the recursive algorithm is so slow is because of the algorithm used to simulate

recursion. To compute F

n

, there is one call to F

n-1

 and F

n-2

. However, since F

n-1

 recursively

makes a call to F

n-2

 and F

n-3

, there are actually two separate calls to compute F

n-2

. If one

traces out the entire algorithm, then we can see that F

n-3

 is computed three times, F

n-4

 is

computed five times, F

n-5

 is computed eight times, and so on. As Figure 10.42 shows, the growth

of redundant calculations is explosive. If the compiler's recursion simulation algorithm were

able to keep a list of all precomputed values and not make a recursive call for an already solved

subproblem, then this exponential explosion would be avoided. This is why the program in Figure

10.41 is so much more efficient. calculations is explosive. If the compiler's recursion

simulation algorithm were able to keep a list of all precomputed values and not make a recursive

call for an already solved subproblem, then this exponential explosion would be avoided. This is

why the program in Figure 10.41 is so much more efficient.

/* Compute Fibonacci numbers as described in Chapter 1 */

unsigned int

fib(unsigned int n)

{

页码，34/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

if(n <= 1)

return 1;

else

return(fib(n-1) + fib(n-2));

}

Figure 10.40 Inefficient algorithm to compute Fibonacci numbers

unsigned int

fibonacci(unsigned int n)

{

unsigned int i, last, next_to_last, answer;

if(n <= 1)

return 1;

last = next_to_last = 1;

for(i = 2; i <= n; i++)

{

answer = last + next_to_last;

next_to_last = last;

last = answer;

}

return answer;

}

Figure 10.41 Linear algorithm to compute Fibonacci numbers

Figure 10.42 Trace of the recursive calculation of Fibonacci numbers

double

eval(unsigned int n)

{

页码，35/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

int i;

double sum;

if(n == 0)

return 1.0;

else

{

sum = 0.0;

for(i=0; i<n; i++)

sum += eval(i);

return(2.0 * sum / n + n);

}

}

Figure 10.43 Recursive program to evaluate

As a second example, we saw in

Chapter 7 how to solve the recurrence

with C(0) = 1. Suppose that we want to check, numerically, whether the solution we obtained is

correct. We could then write the simple program in Figure 10.43 to evaluate the recursion.

Once again, the recursive calls duplicate work. In this case, the running time T(n) satisfies

 because, as shown in Figure 10.44, there is one (direct) recursive call of

each size from 0 to n -1, plus O(n) additional work (where else have we seen the tree shown in

Figure 10.44?). Solving for T(n), we find that it grows exponentially. By using a table, we

obtain the program in Figure 10.45. This program avoids the redundant recursive calls and runs in

O(n

2

). It is not a perfect program; as an exercise, you should make the simple change that

reduces its running time to O(n).

Figure 10.44 Trace of the recursive calculation in eval

double

eval(unsigned int n)

页码，36/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

{

int i,j;

double sum, answer;

double *c;

c = (double*) malloc(sizeof (double)*(n+1));

if(c == NULL)

fatal_error("Out of space!!!");

c[0] = 1.0;

for(i=1; i<=n; i++) /* Evaluate C

i

, 1 i n */

{

sum = 0.0;

 /* i-1 */

for(j=0; j<i; j++) /* Evaluate C

j

 */

 /* j=0 */

sum += c[j];

c[i] = 2.0 * sum/i + i;

}

answer = c[n];

free(c);

return answer;

}

Figure 10.45 Evaluating with a table

10.3.2. Ordering Matrix Multiplications

Suppose we are given four matrices, A, B, C, and D, of dimensions A = 50 X 10, B = 10 X 40, C =

40 X 30, and D = 30 X 5. Although matrix multiplication is not commutative, it is associative,

which means that the matrix product ABCD can be parenthesized, and thus evaluated, in any order.

The obvious way to multiply two matrices of dimensions p X q and q X r, respectively, uses pqr
scalar multiplications. (Using a theoretically superior algorithm such as Strassen''s algorithm

does not significantly alter the problem we will consider, so we will assume this performance

bound.) What is the best way to perform the three matrix multiplications required to compute

ABCD?

In the case of four matrices, it is simple to solve the problem by exhaustive search, since there

are only five ways to order the multiplications. We evaluate each case below:

页码，37/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

 (A((BC)D)): Evaluating BC requires 10 X 40 X 30 = 12,000 multiplications. Evaluating (BC)D

requires the 12,000 multiplications to compute BC, plus an additional 10 X 30 X 5 = 1,500

multiplications, for a total of 13,500. Evaluating (A((BC)D) requires 13,500 multiplications for

(BC)D, plus an additional 50 X 10 X 5 = 2,500 multiplications, for a grand total of 16,000

multiplications.

 (A(B(CD))): Evaluating CD requires 40 X 30 X 5 = 6,000 multiplications. Evaluating B(CD)

requires 6,000 multiplications to compute CD, plus an additional 10 X 40 X 5 = 2,000

multiplications, for a total of 8,000. Evaluating (A(B(CD)) requires 8,000 multiplications for B

(CD), plus an additional 50 X 10 X 5 = 2,500 multiplications, for a grand total of 10,500

multiplications.

 ((AB)(CD)): Evaluating CD requires 40 X 30 X 5 = 6,000 multiplications. Evaluating AB

requires 50 X 10 X 40 = 20,000 multiplications. Evaluating ((AB)(CD)) requires 6,000

multiplications for CD, 20,000 multiplications for AB, plus an additional 50 X 40 X 5 = 10,000

multiplications for a grand total of 36,000 multiplications.

 (((AB)C)D): Evaluating AB requires 50 X 10 X 40 = 20,000 multiplications. Evaluating (AB)C

requires the 20,000 multiplications to compute AB, plus an additional 50 X 40 X 30 = 60,000

multiplications, for a total of 80,000. Evaluating (((AB)C)D) requires 80,000 multiplications for

(AB)C, plus an additional 50 X 30 X 5 = 7,500 multiplications, for a grand total of 87,500

multiplications.

 ((A(BC))D): Evaluating BC requires 10 X 40 X 30 = 12,000 multiplications. Evaluating A(BC)

requires the 12,000 multiplications to compute BC, plus an additional 50 X 10 X 30 = 15,000

multiplications, for a total of 27,000. Evaluating ((A(BC))D) requires 27,000 multiplications for

A(BC), plus an additional 50 X 30 X 5 = 7,500 multiplications, for a grand total of 34,500

multiplications.

The calculations show that the best ordering uses roughly one-ninth the number of multiplications

as the worst ordering. Thus, it might be worthwhile to perform a few calculations to determine

the optimal ordering. Unfortunately, none of the obvious greedy strategies seems to work.

Moreover, the number of possible orderings grows quickly. Suppose we define T(n) to be this

number. Then T(1) = T(2) = 1, T(3) = 2, and T(4) = 5, as we have seen. In general,

To see this, suppose that the matrices are A

1

, A

2

, . . . , A

n

, and the last multiplication

performed is (A

1

A

2

. . . A

i

)(A

i+1

A

i+2 . . .

A

n

). Then there are T(i) ways to compute (A

1

A

2

 A

i

) and T(n - i) ways to compute (A

i+1

A

i+2

 A

n

). Thus, there are T(i)T(n

- i) ways to compute (A

1

A

2

 A

i

) (A

i+1

A

i+2

 A

n

) for each possible i.

The solution of this recurrence is the well-known Catalan numbers, which grow exponentially.

Thus, for large n, an exhaustive search through all possible orderings is useless. Nevertheless,

this counting argument provides a basis for a solution that is substantially better than

exponential. Let c

i

 be the number of columns in matrix A

i

 for 1 i n. Then A

i

 has c

i-1

页码，38/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

rows, since otherwise the multiplications are not valid. We will define c

0

 to be the number of

rows in the first matrix, A

1.

Suppose m

Left,Right

 is the number of multiplications required to multiply A

Left

A

Left+1

 A

Right-1

A

Right.

 For consistency, m

Left,Left

 = 0. Suppose the last multiplication is

(A

Left

...A

i

)(A

i+1

 A

Right

), where Left i Right. Then the number of

multiplications used is m

Left,i

 + m

i+1,Right

 + c

Left-1

c

i

c

Right.

 These three terms represent the

multiplications required to compute (A

Left

 A

i

),(A

i+1

 A

Right

), and

their product, respectively.

If we define M

Left,Right

 to be the number of multiplications required in an optimal ordering,

then, if Left < Right,

This equation implies that if we have an optimal multiplication arrangement of A

Left

 A

Right

, the subproblems A

Left

 A

i

 and A

i+1

 A

Right

 cannot be

performed suboptimally. This should be clear, since otherwise we could improve the entire result

by replacing the suboptimal computation by an optimal computation.

The formula translates directly to a recursive program, but, as we have seen in the last section,

such a program would be blatantly inefficient. However, since there are only approximately n

2

/2

values of M

Left,Right

 that ever need to be computed, it is clear that a table can be used to

store these values. Further examination shows that if Right - Left = k, then the only values M

x,y

that are needed in the computation of M

Left,Right

satisfy y - x < k. This tells us the order in

which we need to compute the table.

If we want to print out the actual ordering of the multiplications in addition to the final

answer M

1,n

, then we can use the ideas from the shortest-path algorithms in Chapter 9. Whenever

we make a change to M

Left,Right

, we record the value of i that is responsible. This gives the

simple program shown in Figure 10.46.

Although the emphasis of this chapter is not coding, it is worth noting that many programmers

tend to shorten variable names to a single letter. c, i, and k are used as single-letter

variables because this agrees with the names we have used in the description of the algorithm,

which is very mathematical. However, it is generally best to avoid l as a variable name, because

"l" looks too much like 1 and can make for very difficult debugging if you make a transcription

error.

Returning to the algorithmic issues, this program contains a triply nested loop and is easily

seen to run in O(n

3

) time. The references describe a faster algorithm, but since the time to

perform the actual matrix multiplication is still likely to be much larger than the time to

compute the optimal ordering, this algorithm is still quite practical.

/* Compute optimal ordering of matrix multiplication */

页码，39/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/* c contains number of columns for each of the n matrices */

/* c[0] is the number of rows in matrix 1 */

/* Minimum number of multiplications is left in M[1][n] */

/* Actual ordering can be computed via */

/* another procedure using last_change */

/* M and last_change are indexed starting at 1, instead of zero */

void

opt_matrix(int c[], unsigned int n, two_d_array M,

two_d_array last_change)

{

int i, k, Left, Right, this_M;

for(Left = 1; Left <= n; Left++)

M[Left][Left] = 0;

for(k = 1; k < n; k++) /* k is Right-Left */

for(Left = 1; Left <= n-k; Left++)

{ /* for each position */

Right = Left + k;

M[Left][Right] = INT_MAX;

for(i = Left; i < Right; i++)

{

this_M = M[Left][i] + M[i+1][Right]

+ c[Left-1] * c[i] * c[Right];

if(this_M < M[Left][Right]) /* Update min */

{

M[Left][Right] = this_M;

last_change[Left][Right] = i;

}

}

}

}

Figure 10.46 Program to find optimal ordering of Matrix Multiplications

10.3.3. Optimal Binary Search Tree

页码，40/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Our second dynamic programming example considers the following input: We are given a list of

words, w

1

, w

2

,..., w

n

, and fixed probabilities p

1

, p

2

, . . . , p

n

 of their occurrence. The

problem is to arrange these words in a binary search tree in a way that minimizes the expected

total access time. In a binary search tree, the number of comparisons needed to access an element

at depth d is d + 1, so if w

i

 is placed at depth d

i

, then we want to minimize .

As an example, Figure 10.47 shows seven words along with their probability of occurrence in some

context. Figure 10.48 shows three possible binary search trees. Their searching costs are shown

in Figure 10.49.

The first tree was formed using a greedy strategy. The word with the highest probability of being

accessed was placed at the root. The left and right subtrees were then formed recursively. The

second tree is the perfectly balanced search tree. Neither of these trees is optimal, as

demonstrated by the existence of the third tree. From this we can see that neither of the obvious

solutions works.

This is initially surprising, since the problem appears to be very similar to the construction of

a Huffman encoding tree, which, as we have already seen, can be solved by a greedy algorithm.

Construction of an optimal binary search tree is harder, because the data is not constrained to

appear only at the leaves, and also because the tree must satisfy the binary search tree

property.

A dynamic programming solution follows from two observations. Once again, suppose we are trying

to place the (sorted) words w

Left

, w

Left+1

, . . . , w

Right-1

, w

Right

 into a binary search tree.

Suppose the optimal binary search tree has w

i

 as the root, where Left i Right. Then

the left subtree must contain w

Left

, . . . ,w

i-1

, and the right subtree must contain w

i+1

 . . .

,w

Right

 (by the binary search tree property). Further, both of these subtrees must also be

optimal, since otherwise they could be replaced by optimal subtrees, which would give a better

solution for w

Left

 . . . , w

Right

. Thus, we can write a formula for the cost C

Left,Right

 of an

optimal binary search tree. Figure 10.50 may be helpful.

If Left > Right, then the cost of the tree is 0; this is the NULL case, which we always have for

binary search trees. Otherwise, the root costs p

i

. The left subtree has a cost of C

Left,i-1

,

relative to its root, and the right subtree has a cost of C

i+l,Right

 relative to its root. As

Figure 10.50 shows, each node in these subtrees is one level deeper from w

i

 than from their

respective roots, so we must add . This gives the formula

From this equation, it is straightforward to write a program to compute the cost of the optimal

binary search tree. As usual, the actual search tree can be maintained by saving the value of i

that minimizes C

Left,Right.

 The standard recursive routine can be used to print the actual tree.

Word Probability

页码，41/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

 a 0.22

 am 0.18

and 0.20

egg 0.05

 if 0.25

the 0.02

two 0.08

Figure 10.47 Sample input for optimal binary search tree problem

Figure 10.48 Three possible binary search trees for data in previous table

 Input Tree #1 Tree #2 Tree #3

Word Probability Access Cost Access Cost Access Cost

 w

i

 p

i

Once Sequence Once Sequence Once Sequence

 a 0.22 2 0.44 3 0.66 2 0.44

 am 0.18 4 0.72 2 0.36 3 0.54

and 0.20 3 0.60 3 0.60 1 0.20

egg 0.05 4 0.20 1 0.05 3 0.15

 if 0.25 1 0.25 3 0.75 2 0.50

the 0.02 3 0.06 2 0.04 4 0.08

two 0.08 2 0.16 3 0.24 3 0.24

Totals 1.00 2.43 2.70 2.15

Figure 10.49 Comparison of the three binary search trees

页码，42/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.50 Structure of an optimal binary search tree

Figure 10.51 shows the table that will be produced by the algorithm. For each subrange of words,

the cost and root of the optimal binary search tree are maintained. The bottommost entry, of

course, computes the optimal binary search tree for the entire set of words in the input. The

optimal tree is the third tree shown in Fig. 10.48.

The precise computation for the optimal binary search tree for a particular subrange, namely

am..if, is shown in Figure 10.52. It is obtained by computing the minimum-cost tree obtained by

placing am, and, egg, and if at the root. For instance, when and is placed at the root, the left

subtree contains am..am (of cost 0.18, via previous calculation), the right subtree contains

egg..if (of cost 0.35), and , for a total cost of 1.21.

Figure 10.51 Computation of the optimal binary search tree for sample input

页码，43/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.52 Computation of table entry (1.21, and) for am..if

The running time of this algorithm is O(n

3

), because when it is implemented, we obtain a triple

loop. An O(n

2

) algorithm for the problem is sketched in the exercises.

10.3.4. All-Pairs Shortest Path

Our third and final dynamic programming application is an algorithm to compute shortest weighted

paths between every pair of points in a directed graph G = (V, E). In Chapter 9, we saw an

algorithm for the single-source shortest-path problem, which finds the shortest path from some

arbitrary vertex s to all others. That algorithm (Dijkstra's) runs in O(V

2

) time on

dense graphs, but substantially faster on sparse graphs. We will give a short algorithm to solve

the all-pairs problem for dense graphs. The running time of the algorithm is O(V

3

),

which is not an asymptotic improvement over V iterations of Dijkstra's algorithm but

could be faster on a very dense graph, because its loops are tighter. The algorithm also performs

correctly if there are negative edge costs, but no negative-cost cycles; Dijkstra's algorithm

fails in this case.

Let us recall the important details of Dijkstra's algorithm (the reader may wish to review

Section 9.3). Dijkstra's algorithm starts at a vertex s and works in stages. Each vertex in the

graph is eventually selected as an intermediate vertex. If the current selected vertex is v, then

for each w V, we set d

w

 = min(d

w

, d

v

 + c

v,w

). This formula says that the best distance to w

(from s) is either the previously known distance to w from s, or the result of going from s to v

(optimally) and then directly from v to w.

Dijkstra's algorithm provides the idea for the dynamic programming algorithm: we select the

vertices in sequential order. We will define D

k,i,j

 to be the weight of the shortest path from v

i

to v

j

 that uses only v

1

, v

2

, . . . ,v

k

 as intermediates. By this definition, D

0,i,j

 = c

i,j

, where

c

i,j

 is if (v

i

, v

j

) is not an edge in the graph. Also, by definition, D

|V|,i,j

 is the

页码，44/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

shortest path from vi to vj in the graph.

/* Compute All-Shortest Paths */

/* A[] contains the adjacency matrix */

/* with A[i][i] presumed to be zero */

/* D[] contains the values of shortest path */

/* |V | is the number of vertices */

/* A negative cycle exists iff */

/* d[i][j] is set to a negative value at line 9 */

/* Actual Path can be computed via another procedure using path */

/* All arrays are indexed starting at 0 */

void

all_pairs(two_d_array A, two_d_array D, two_d_array path)

{

int i, j, k;

/*1*/ for(i = 0; i < |V |; i++) /* Initialize D and path */

/*2*/ for(j = 0; j < |V |; j++)

{

/*3*/ D[i][j] = A[i][j];

/*4*/ path[i][j] = NOT_A_VERTEX;

}

/*5*/ for(k = 0; k < |v |; k++)

/* Consider each vertex as an intermediate */

/*6*/ for(i = 0; i < |V |; i++)

/*7*/ for(j = 0; j < |V |; j++)

/*8*/ if(d[i][k] + d[k][j] < d[i][j])

/*update min */

{

/*9*/ d[i][j] = d[i][k] + d[k][j];

/*10*/ path[i][j] = k;

}

}

Figure 10.53 All-pairs shortest path

页码，45/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

As Figure 10.53 shows, when k > 0 we can write a simple formula for D

k,i,j

. The shortest path

from v

i

 to v

j

 that uses only v

1

, v

2

, . . . ,v

k

 as intermediates is the shortest path that either

does not use v

k

as an intermediate at all, or consists of the merging of the two paths v

i

 v

k

and v

k

 v

j

, each of which uses only the first k - 1 vertices as intermediates. This leads to

the formula

D

k,i,j

 = min{D

k - 1,i,j

, D

k - 1,i,k

 + D

k - 1,k,j

}

The time requirement is once again O(|V|

3

). Unlike the two previous dynamic programming examples,

this time bound has not been substantially lowered by another approach. Because the kth stage

depends only on the (k - 1)st stage, it appears that only two |V| X |V| matrices need to be

maintained.

However, using k as an intermediate vertex on a path that starts or finishes with k does not

improve the result unless there is a negative cycle. Thus, only one matrix is necessary, because

D

k-1,i,k

 = D

k,i,k

 and D

k-1,k,j

 = D

k,k,j

, which implies that none of the terms on the right change

values and need to be saved. This observation leads to the simple program in Figure 10.53, which

numbers vertices starting at zero to conform with C's conventions.

On a complete graph, where every pair of vertices is connected (in both directions), this

algorithm is almost certain to be faster than |V| iterations of Dijkstra's algorithm, because the

loops are so tight. Lines 1 through 4 can be executed in parallel, as can lines 6 through 10.

Thus, this algorithm seems to be well-suited for parallel computation.

Dynamic programming is a powerful algorithm design technique, which provides a starting point for

a solution. It is essentially the divide and conquer paradigm of solving simpler problems first,

with the important difference being that the simpler problems are not a clear division of the

original. Because subproblems are repeatedly solved, it is important to record their solutions in

a table rather than recompute them. In some cases, the solution can be improved (although it is

certainly not always obvious and frequently difficult), and in other cases, the dynamic

programming technique is the best approach known.

In some sense, if you have seen one dynamic programming problem, you have seen them all. More

examples of dynamic programming can be found in the exercises and references.

10.4. Randomized Algorithms

Suppose you are a professor who is giving weekly programming assignments. You want to make sure

that the students are doing their own programs or, at the very least, understand the code they

are submitting. One solution is to give a quiz on the day that each program is due. On the other

hand, these quizzes take time out of class, so it might only be practical to do this for roughly

half of the programs. Your problem is to decide when to give the quizzes.

Of course, if the quizzes are announced in advance, that could be interpreted as an implicit

license to cheat for the 50 percent of the programs that will not get a quiz. One could adopt the

unannounced strategy of giving quizzes on alternate programs, but students would figure out the

strategy before too long. Another possibility is to give quizzes on what seems like the important

programs, but this would likely lead to similar quiz patterns from semester to semester. Student

grapevines being what they are, this strategy would probably be worthless after a semester.

One method that seems to eliminate these problems is to use a coin. A quiz is made for every

program (making quizzes is not nearly as time-consuming as grading them), and at the start of

class, the professor will flip a coin to decide whether the quiz is to be given. This way, it is

impossible to know before class whether or not the quiz will occur, and these patterns do not

repeat from semester to semester. Thus, the students will have to expect that a quiz will occur

页码，46/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

with 50 percent probability, regardless of previous quiz patterns. The disadvantage is that it is

possible that there is no quiz for an entire semester. This is not a likely occurrence, unless

the coin is suspect. Each semester, the expected number of quizzes is half the number of

programs, and with high probability, the number of quizzes will not deviate much from this.

This example illustrates what we call randomized algorithms. At least once during the algorithm,

a random number is used to make a decision. The running time of the algorithm depends not only on

the particular input, but also on the random numbers that occur.

The worst-case running time of a randomized algorithm is almost always the same as the worst-case

running time of the nonrandomized algorithm. The important difference is that a good randomized

algorithm has no bad inputs, but only bad random numbers (relative to the particular input). This

may seem like only a philosophical difference, but actually it is quite important, as the

following example shows.

Consider two variants of quicksort. Variant A uses the first element as pivot, while variant B

uses a randomly chosen element as pivot. In both cases, the worst-case running time is (n

2

),

because it is possible at each step that the largest element is chosen as pivot. The difference

between these worst cases is that there is a particular input that can always be presented to

variant A to cause the bad running time. Variant A will run in (n

2

) time every single time it

is given an already sorted list. If variant B is presented with the same input twice, it will

have two different running times, depending on what random numbers occur.

Throughout the text, in our calculations of running times, we have assumed that all inputs are

equally likely. This is not true, because nearly sorted input, for instance, occurs much more

often than is statistically expected, and this causes problems, particularly for quicksort and

binary search trees. By using a randomized algorithm, the particular input is no longer

important. The random numbers are important, and we can get an expected running time, where we

now average over all possible random numbers instead of over all possible inputs. Using quicksort

with a random pivot gives an O(n log n)-expected-time algorithm. This means that for any input,

including already-sorted input, the running time is expected to be O(n log n), based on the

statistics of random numbers. An expected running time bound is somewhat stronger than an

average-case bound but, of course, is weaker than the corresponding worst-case bound. On the

other hand, as we saw in the selection problem, solutions that obtain the worst-case bound are

frequently not as practical as their average-case counterparts. Randomized algorithms usually

are.

In this section we will examine two uses of randomization. First, we will see a novel scheme for

supporting the binary search tree operations in O(log n) expected time. Once again, this means

that there are no bad inputs, just bad random numbers. From a theoretical point of view, this is

not terribly exciting, since balanced search trees achieve this bound in the worst case.

Nevertheless, the use of randomization leads to relatively simple algorithms for searching,

inserting, and especially deleting.

Our second application is a randomized algorithm to test the primality of large numbers. No

efficient polynomial-time nonrandomized algorithms are known for this problem. The algorithm we

present runs quickly but occasionally makes an error. The probability of error can, however, be

made negligibly small.

10.4.1. Random Number Generators

Since our algorithms require random numbers, we must have a method to generate them. Actually,

true randomness is virtually impossible to do on a computer, since these numbers will depend on

the algorithm, and thus cannot possibly be random. Generally, it suffices to produce pseudorandom

numbers, which are numbers that appear to be random. Random numbers have many known statistical

properties; pseudorandom numbers satisfy most of these properties. Surprisingly, this too is much

easier said than done.

页码，47/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Suppose we only need to flip a coin; thus, we must generate a 0 or 1 randomly. One way to do this

is to examine the system clock. The clock might record time as an integer that counts the number

of seconds since January 1, 1970.

*

 We could then use the lowest bit. The problem is that this

does not work well if a sequence of random numbers is needed. One second is a long time, and the

clock might not change at all while the program is running. Even if the time were recorded in

units of microseconds, if the program were running by itself the sequence of numbers that would

be generated would be far from random, since the time between calls to the generator would be

essentially identical on every program invocation. We see, then, that what is really needed is a

sequence of random numbers.

ç These numbers should appear independent. If a coin is flipped and
heads appears, the next coin flip should still be equally likely to come up heads or tails.

*UNIX does this.

çWe will use random in place of pseudorandom in the rest of this section.

The standard method to generate random numbers is the linear congruential generator, which was

first described by Lehmer in 1951. Numbers x

1

, x

2

, . . . are generated satisfying

x

i + 1

 = ax

i

 mod m.

To start the sequence, some value of x

0

 must be given. This value is known as the seed. If x

0

 =

0, then the sequence is far from random, but if a and m are correctly chosen, then any other 1

 x

0

< m is equally valid. If m is prime, then x

i

 is never 0. As an example, if m = 11, a = 7,

and x

0

= 1, then the numbers generated are

7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, . . .

Notice that after m - 1 = 10 numbers, the sequence repeats. Thus, this sequence has a period of m

-1, which is as large as possible (by the pigeonhole principle). If m is prime, there are always

choices of a that give a full period of m - 1. Some choices of a do not; if a = 5 and x

0

= 1, the

sequence has a short period of 5.

5, 3, 4, 9, 1, 5, 3, 4, . . .

Obviously, if m is chosen to be a large, 31-bit prime, the period should be significantly large

for most applications. Lehmer suggested the use of the 31-bit prime m = 2

31

- 1 = 2,147,483,647.

For this prime, a = 7

5

= 16,807 is one of the many values that gives a full-period generator. Its

use has been well studied and is recommended by experts in the field. We will see later that with

random number generators, tinkering usually means breaking, so one is well advised to stick with

this formula until told otherwise.

This seems like a simple routine to implement. Generally, a global variable is used to hold the

current value in the sequence of x's. This is the rare case where a global variable is useful.

This global variable is initialized by some routine. When debugging a program that uses random

numbers, it is probably best to set x

0

= 1, so that the same random sequence occurs all the time.

When the program seems to work, either the system clock can be used or the user can be asked to

input a value for the seed.

It is also common to return a random real number in the open interval (0, 1) (0 and 1 are not

possible values); this can be done by dividing by m. From this, a random number in any closed

interval [a, b] can be computed by normalizing. This yields the "obvious" routine in Figure 10.54

which, unfortunately, works on few machines.

The problem with this routine is that the multiplication could overflow; although this is not an

页码，48/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

error, it affects the result and thus the pseudo-randomness. Schrage gave a procedure in which

all of the calculations can be done on a 32-bit machine without overflow. We compute the quotient

and remainder of m/a and define these as q and r, respectively. In our case, q = 127,773, r =

2,836, and r < q. We have

unsigned int seed; /* global variable */

#define a 16807 /* 7^5 */

#define m 2147483647 /* 2^31 - 1 */

double

random(void)

{

seed = (a * seed) % m;

return(((double) seed) / m);

}

Figure 10.54 Random number generator that does not work

Since , we can replace the leading ax

i

 and obtain

Since m = aq + r, it follows that aq - m = -r. Thus, we obtain

The term is either 0 or 1, because both terms are integers and their

difference lies between 0 and 1. Thus, we have

页码，49/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

A quick check shows that because r < q, all the remaining terms can be calculated without

overflow (this is one of the reasons for chosing a = 7

5

). Furthermore, (x

i

) = 1 only if the

remaining terms evaluate to less than zero. Thus (x

i

) does not need to be explicitly computed

but can be determined by a simple test. This leads to the program in Figure 10.55.

This program works as long as INT_MAX 2

31

- 1. One might be tempted to assume that all

machines have a random number generator at least as good as the one in Figure 10.55 in their

standard library. Sadly, this is not true. Many libraries have generators based on the function

x

i+1

 = (ax

i

 + c) mod 2

b

where b is chosen to match the number of bits in the machine's integer, and c is odd. These

libraries also return x

i

, instead of a value between 0 and 1. Unfortunately, these generators

always produce values of x

i

that alternate between even and odd--hardly a desirable property.

Indeed, the lower k bits cycle with period 2

k

(at best). Many other random number generators have

much smaller cycles than the one provided in Figure 10.55. These are not suitable for the case

where long sequences of random numbers are needed. Finally, it may seem that we can get a better

random number generator by adding a constant to the equation. For instance, it seems that

x

i+1

= (16807x

i

 + 1) mod (2

31

- 1)

would somehow be even more random. This illustrates how fragile these generators are.

[16807(1319592028) + 1] mod (2

31

-1) = 1319592028,

so if the seed is 1,319,592,028, the generator gets stuck in a cycle of period 1.

unsigned int seed; /* global variable */

#define a 16807 /* 7^5 */

#define m 2147483647 /* 2^31 - 1*/

#define q 127773 /* m/a */

#define r 2836 /* m%a */

double

random(void)

{

int tmp_seed;

tmp_seed = a * (seed % q) - r * (seed / q);

if(tmp_seed >= 0)

seed = tmp_seed;

页码，50/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

else

seed = tmp_seed + m;

return(((double) seed) / m);

}

Figure 10.55 Random number generator that works on 32 bit machines

10.4.2. Skip Lists

Our first use of randomization is a data structure that supports both searching and insertion in

O(log n) expected time. As mentioned in the introduction to this section, this means that the

running time for each operation on any input sequence has expected value O(log n), where the

expectation is based on the random number generator. It is possible to add deletion and all the

operations that involve ordering and obtain expected time bounds that match the average time

bounds of binary search trees.

The simplest possible data structure to support searching is the linked list. Figure 10.56 shows

a simple linked list. The time to perform a search is proportional to the number of nodes that

have to be examined, which is at most n.

Figure 10.57 shows a linked list in which every other node has an additional pointer to the node

two ahead of it in the list. Because of this, at most n/2 + 1 nodes are examined in the

worst case.

We can extend this idea and obtain Figure 10.58. Here, every fourth node has a pointer to the

node four ahead. Only n/4 + 2 nodes are examined.

The limiting case of this argument is shown in Figure 10.59. Every 2

i

th node has a pointer to the

node 2

i

 ahead of it. The total number of pointers has only doubled, but now at most log n

 nodes are examined during a search. It is not hard to see that the total time spent for a

search is O(log n), because the search consists of either advancing to a new node or dropping to

a lower pointer in the same node. Each of these steps consumes at most O(log n) total time during

a search. Notice that the search in this data structure is essentially a binary search.

Figure 10.56 Simple linked list

Figure 10.57 Linked list with pointers to two cells ahead

页码，51/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.58 Linked list with pointers to four cells ahead

Figure 10.59 Linked list with pointers to 2

i cells ahead

Figure 10.60 A skip list

The problem with this data structure is that it is much too rigid to allow efficient insertion.

The key to making this data structure usable is to relax the structure conditions slightly. We

define a level k node to be a node that has k pointers. As Figure 10.59 shows, the ith pointer in

any level k node (k i) points to the next node with at least i levels. This is an easy

property to maintain; however, Figure 10.59 shows a more restrictive property than this. We thus

drop the restriction that the ith pointer points to the node 2

i

ahead, and we replace it with the

less restrictive condition above.

When it comes time to insert a new element, we allocate a new node for it. We must at this point

decide what level the node should be. Examining Figure 10.59, we find that roughly half the nodes

are level 1 nodes, roughly a quarter are level 2, and, in general, approximately 1/2

i

 nodes are

level i. We choose the level of the node randomly, in accordance with this probability

distribution. The easiest way to do this is to flip a coin until a head occurs and use the total

number of flips as the node level. Figure 10.60 shows a typical skip list.

Given this, the skip list algorithms are simple to describe. To perform a find, we start at the

highest pointer at the header. We traverse along this level until we find that the next node is

larger than the one we are looking for (or). When this occurs, we go to the next lower level and

continue the strategy. When progress is stopped at level 1, either we are in front of the node we

are looking for, or it is not in the list. To perform an insert, we proceed as in a find, and

keep track of each point where we switch to a lower level. The new node, whose level is

determined randomly, is then spliced into the list. This operation is shown in Figure 10.61.

A cursory analysis shows that since the expected number of nodes at each level is unchanged from

the original (nonrandomized) algorithm, the total amount of work that is expected to be performed

traversing to nodes on the same level is unchanged. This tells us that these operations have O

(log n) expected costs. Of course, a more formal proof is required, but it is not much different

页码，52/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

from this.

Skip lists are similar to hash tables, in that they require an estimate of the number of elements

that will be in the list (so that the number of levels can be determined). If an estimate is not

available, we can assume a large number or use a technique similar to rehashing. Experiments have

shown that skip lists are as efficient as many balanced search tree implementations and are

certainly much simpler to implement in many languages.

10.4.3. Primality Testing

In this section we examine the problem of determining whether or not a large number is prime. As

was mentioned at the end of Chapter 2, some cryptography schemes depend on the difficulty of

factoring a large, 200-digit number into two 100-digit primes. In order to implement this scheme,

we need a method of generating these two primes. The problem is of major theoretical interest,

because nobody now knows how to test whether a d-digit number n is prime in time polynomial in d.

For instance, the obvious method of testing for the divisibility by odd numbers from 3 to

requires roughly divisions, which is about 2

d/2

. On the other hand, this problem is not

thought to be NP-complete; thus, it is one of the few problems on the fringe--its complexity is

unknown at the time of this writing.

Figure 10.61 Before and after an insertion

In this chapter, we will give a polynomial-time algorithm that can test for primality. If the

algorithm declares that the number is not prime, we can be certain that the number is not prime.

If the algorithm declares that the number is prime, then, with high probability but not 100

percent certainty, the number is prime. The error probability does not depend on the particular

number that is being tested but instead depends on random choices made by the algorithm. Thus,

this algorithm occasionally makes a mistake, but we will see that the error ratio can be made

arbitrarily negligible.

The key to the algorithm is a well-known theorem due to Fermat.

THEOREM 10.10.

Fermat's Lesser Theorem: If p is prime, and 0 < a < p, then a

p-1

 1(mod p).

PROOF:

A proof of this theorem can be found in any textbook on number theory.

页码，53/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

For instance, since 67 is prime, 2

66

 1(mod 67). This suggests an algorithm to test whether a

number n is prime. Merely check whether 2

n-1

 1(mod n). If (mod n), then we can be

certain that n is not prime. On the other hand, if the equality holds, then n is probably prime.

For instance, the smallest n that satisfies 2

n-1

 1(mod n) but is not prime is n = 341.

This algorithm will occasionally make errors, but the problem is that it will always make the

same errors. Put another way, there is a fixed set of n for which it does not work. We can

attempt to randomize the algorithm as follows: Pick 1 < a < n - 1 at random. If a

n-1

 1(mod

n), declare that n is probably prime, otherwise declare that n is definitely not prime. If n =

341, and a = 3, we find that 3

340

 56(mod 341). Thus, if the algorithm happens to choose a =

3, it will get the correct answer for n = 341.

Although this seems to work, there are numbers that fool even this algorithm for most choices of

a. One such set of numbers is known as the Carmichael numbers. These are not prime but satisfy

a

n-1

 1(mod n) for all 0 < a < n that are relatively prime to n. The smallest such number is

561. Thus, we need an additional test to improve the chances of not making an error.

In Chapter 7, we proved a theorem related to quadratic probing. A special case of this theorem is

the following:

THEOREM 10.11.

If p is prime and 0 < x < p, the only solutions to x

2

 1(mod p) are x = 1, p - 1.

PROOF:

x

2

 1(mod p) implies that x

2

 -1 0(mod p). This implies (x - 1)(x + 1) 0(mod p).

Since p is prime, 0 x < p, and p must divide either (x - 1) or (x + 1), the theorem follows.

Therefore, if at any point in the computation of a

n-1

mod n we discover a violation of this

theorem, we can conclude that n is definitely not prime. If we use power, from Section 2.4.4, we

see that there will be several opportunities to apply this test. We modify this routine to

perform operations mod n, and apply the test of Theorem 10.11. This strategy is implemented in

Figure 10.62. Because power needs to return two pieces of information, we pass the address of

these items (result and what_n_is) by pointers.

Recall that if test_prime returns DEFINITELY_COMPOSITE, it has proven that n cannot be prime. The

proof is nonconstructive, because it gives no method of actually finding the factors. It has been

shown that for any (sufficiently large) n, at most (n - 9)/4 values of a fool this algorithm.

Thus, if a is chosen at random, and the algorithm answers PROBABLY_PRIME, then the algorithm is

correct at least 75 percent of the time. Suppose test_prime is run 50 times. The probability that

the algorithm is fooled once is at most 1/4. Thus, the probability that 50 independent random

trials fool the algorithm is never more than 1/4

50

 = 2

-100

. This is actually a very conservative

estimate, which holds for only a few choices of n. Even so, one is more likely to see a hardware

error than an incorrect claim of primality.

页码，54/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

10.5. Backtracking Algorithms

The last algorithm design technique we will examine is backtracking. In many cases, a

backtracking algorithm amounts to a clever implementation of exhaustive search, with generally

unfavorable performance. This is not always the case, however, and even so, in some cases, the

savings over a brute force exhaustive search can be significant. Performance is, of course,

relative: An O(n

2

) algorithm for sorting is pretty bad, but an O(n

5

) algorithm for the traveling

salesman (or any NP-complete) problem would be a landmark result.

A practical example of a backtracking algorithm is the problem of arranging furniture in a new

house. There are many possibilities to try, but typically only a few are actually considered.

Starting with no arrangement, each piece of furniture is placed in some part of the room. If all

the furniture is placed and the owner is happy, then the algorithm terminates. If we reach a

point where all subsequent placement of furniture is undesirable, we have to undo the last step

and try an alternative. Of course, this might force another undo, and so forth. If we find that

we undo all possible first steps, then there is no placement of furniture that is satisfactory.

Otherwise, we eventually terminate with a satisfactory arrangement. Notice that although this

algorithm is essentially brute force, it does not try all possibilities directly. For instance,

arrangements that consider placing the sofa in the kitchen are never tried. Many other bad

arrangements are discarded early, because an undesirable subset of the arrangement is detected.

The elimination of a large group of possibilities in one step is known as pruning.

We will see two examples of backtracking algorithms. The first is a problem in computational

geometry. Our second example shows how computers select moves in games, such as chess and

checkers.

10.5.1. The Turnpike Reconstruction Problem

Suppose we are given n points, p

1

, p

2

, . . . , p

n

, located on the x-axis. x

i

 is the x coordinate

of p

i

. Let us further assume that x

1

 = 0 and the points are given from left to right. These n

points determine n(n - 1)/2 (not necessarily unique) distances d

1

, d

2

, . . . , d

n

 between every

pair of points of the form | x

i

 - x

j

| (i j). It is clear that if we are given the set of

points, it is easy to construct the set of distances in O(n

2

) time. This set will not be sorted,

but if we are willing to settle for an O(n

2

log n) time bound, the distances can be sorted, too.

The turnpike reconstruction problem is to reconstruct a point set from the distances. This finds

applications in physics and molecular biology (see the references for pointers to more specific

information). The name derives from the analogy of points to turnpike exits on East Coast

highways. Just as factoring seems harder than multiplication, the reconstruction problem seems

harder than the construction problem. Nobody has been able to give an algorithm that is

guaranteed to work in polynomial time. The algorithm that we will present seems to run in O(n

2

log

n); no counterexample to this conjecture is known, but it is still just that - a conjecture.

enum test_result { PROBABLY_PRIME, DEFINITELY_COMPOSITE };

typedef enum test_result test_result;

/* Compute result = a

p

 mod n. */

/* If at any point x

2

 1(mod n) is detected with x 1, x n - 1, */

页码，55/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/* then set what_n_is to DEFINITELY_COMPOSITE */

/* We are assuming very large integers, so this is pseudocode. */

void

power(unsigned int a, unsigned int p, unsigned int n,

unsigned int *result, test_result *what_n_is)

{

unsigned int x;

/*1*/ if(p = 0) /* Base case */

/*2*/ *result = 1;

else

{

/*3*/ power(a, p/2, n, &x, what_n_is);

/*4*/ *result = (x * x) % n;

/* Check whether x

2

 1(mod n), x 1, x n - 1 */

/*5*/ if((*result = 1) && (x != 1) && (x != n-1))

/*6*/ *what_n_is = DEFINITELY_COMPOSITE;

/* If p is odd, we need one more a */

/*7*/ if((p % 2) = 1)

/*8*/ *result = (*result * a) % n;

}

}

/* test_prime: Test whether n 3 is prime using one value of a */

/* repeat this procedure as many times as needed */

/* for desired error rate */

test_result

test_prime(unsigned int n)

{

unsigned int a, result;

test_result what_n_is;

/*9*/ a = rand_int(2, n-2); /* choose a randomly from 2..n-2 */

/*10*/ what_n_is = PROBABLY_PRIME;

页码，56/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/* Compute a

n-1

 mod n */

/*11*/ power(a, n-1, n, &result, &what_n_is);

/*12*/ if((result != 1) | | (what_n_is = DEFINITELY_COMPOSITE))

/*13*/ return DEFINITELY_COMPOSITE;

else

/*14*/ return PROBABLY_PRIME;

}

Figure 10.62 A probabilistic primality testing algorithm

Of course, given one solution to the problem, an infinite number of others can be constructed by

adding an offset to all the points. This is why we insist that the first point is anchored at 0

and that the point set that constitutes a solution is output in nondecreasing order.

Let D be the set of distances, and assume that | D | = m = n(n - 1)/2. As an example, suppose

that

D = {1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 10}

Since | D | = 15, we know that n = 6. We start the algorithm by setting x

1

 = 0. Clearly, x

6

= 10,

since 10 is the largest element in D. We remove 10 from D. The points that we have placed and the

remaining distances are as shown in the following figure.

The largest remaining distance is 8, which means that either x

2

 = 2 or x

5

 = 8. By symmetry, we

can conclude that the choice is unimportant, since either both choices lead to a solution (which

are mirror images of each other), or neither do, so we can set x

5

 = 8 without affecting the

solution. We then remove the distances x

6

 - x

5

 = 2 and x

5

 - x

1

 = 8 from D, obtaining

The next step is not obvious. Since 7 is the largest value in D, either x

4

 = 7 or x

2

 = 3. If x

4

=

7, then the distances x

6

 - 7 = 3 and x

5

 - 7 = 1 must also be present in D. A quick check shows

that indeed they are. On the other hand, if we set x

2

 = 3, then 3 - x

1

 = 3 and x

5

 - 3 = 5 must be

present in D. These distances are also in D, so we have no guidance on which choice to make.

Thus, we try one and see if it leads to a solution. If it turns out that it does not, we can come

back and try the other. Trying the first choice, we set x

4

 = 7, which leaves

页码，57/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

At this point, we have x

1

 = 0, x

4

 = 7, x

5

 = 8, and x

6

 = 10. Now the largest distance is 6, so

either x

3

 = 6 or x

2

 = 4. But if x

3

 = 6, then x

4

 - x

3

 = 1, which is impossible, since 1 is no

longer in D. On the other hand, if x

2

 = 4 then x

2

 - x

0

 = 4, and x

5

 - x

2

 = 4. This is also

impossible, since 4 only appears once in D. Thus, this line of reasoning leaves no solution, so

we backtrack.

Since x

4

 = 7 failed to produce a solution, we try x

2

 = 3. If this also fails, we give up and

report no solution. We now have

Once again, we have to choose between x

4

 = 6 and x

3

 = 4. x

3

 = 4 is impossible, because D only has

one occurrence of 4, and two would be implied by this choice. x

4

= 6 is possible, so we obtaining

The only remaining choice is to assign x

3

 = 5; this works because it leaves D empty, and so we

have a solution.

Figure 10.63 shows a decision tree representing the actions taken to arrive at the solution.

Instead of labeling the branches, we have placed the labels in the branches' destination nodes. A

node with an asterisk indicates that the points chosen are inconsistent with the given distances;

nodes with two asterisks have only impossible nodes as children, and thus represent an incorrect

path.

页码，58/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.63 Decision tree for the worked turnpike reconstruction example

int

turnpike(int x [], dist_set D , unsigned int n)

{

/*1*/ x[1] = 0;

/*2*/ x[n] = delete_max(D);

/*3*/ x[n - 1] = delete_max(D);

/*4*/ if(x[n]-x[n - 1] D)

{

/*5*/ delete(x[n]-x[n - 1],D);

/*6*/ return place(x, D, n, 2,n - 2); }

else

/*7*/ return FALSE;

}

Figure 10.64 Turnpike reconstruction algorithm: driver routine (pseudocode)

The pseudocode to implement this algorithm is mostly straightforward. The driving routine,

turnpike, is shown in Figure 10.64. It receives the point array x (which need not be

initialized), the distance array D, and n.

*

 If a solution is discovered, then TRUE will be

returned, the answer will be placed in x, and D will be empty. Otherwise, FALSE will be returned,

x will be undefined, and the distance array D will be untouched. The routine sets x

1

, x

n-1

, and

x

n

, as described above, alters D, and calls the backtracking algorithm place to place the other

points. We presume that a check has already been made to ensure that | D | = n(n -1)/2.

页码，59/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

*We have used one-letter variable names, which is generally poor style, for consistency with the worked example. We
also, for simplicity, do not give the type of variables.

The more difficult part is the backtracking algorithm, which is shown in Figure 10.65. Like most

backtracking algorithms, the most convenient implementation is recursive. We pass the same

arguments plus the boundaries Left and Right; x

Left

, . . . , x

Right

 are the x coordinates of

points that we are trying to place. If D is empty (or Left > Right), then a solution has been

found, and we can return. Otherwise, we first try to place x

Right

 = D

max

. If all the appropriate

distances are present (in the correct quantity), then we tentatively place this point, remove

these distances, and try to fill from Left to Right- 1. If the distances are not present, or the

attempt to fill Left to Right- 1 fails, then we try setting x

Left

 = x

n

 - d

max

, using a similar

strategy. If this does not work, then there is no solution; otherwise a solution has been found,

and this information is eventually passed back to turnpike by the return statement and x array.

The analysis of the algorithm involves two factors. Suppose lines 9 through 11 and 18 through 20

are never executed. We can maintain D as a balanced binary search (or splay) tree (this would

require a code modification, of course). If we never backtrack, there are at most O(n

2

)

operations involving D, such as deletion and the finds implied at lines 4 and 12 to 13. This

claim is obvious for deletions, since D has O(n

2

) elements and no element is ever reinserted.

Each call to place uses at most 2n finds, and since place never backtracks in this analysis,

there can be at most 2n

2

 finds. Thus, if there is no backtracking, the running time is O(n

2

log

n).

Of course, backtracking happens, and if it happens repeatedly, then the performance of the

algorithm is affected. No polynomial bound on the amount of backtracking is known, but on the

other hand, there are no pathological examples that show that backtracking must occur more than O

(1) times. Thus, it is entirely possible that this algorithm is O(n

2

log n). Experiments have

shown that if the points have integer coordinates distributed uniformly and randomly from [0,

D

max

], where D

max

 = (n

2

), then, almost certainly, at most one backtrack is performed during

the entire algorithm.

10.5.2. Games

As our last application, we will consider the strategy that a computer might use to play a

strategic game, such as checkers or chess. We will use, as an example, the much simpler game of

tic-tac-toe, because it makes the points easier to illustrate.

Tic-tac-toe is, of course, a draw if both sides play optimally. By performing a careful case-by-

case analysis, it is not a difficult matter to construct an algorithm that never loses and always

wins when presented the opportunity. This can be done, because certain positions are known traps

and can be handled by a lookup table. Other strategies, such as taking the center square when it

is available, make the analysis simpler. If this is done, then by using a table we can always

choose a move based only on the current position. Of course, this strategy requires the

programmer, and not the computer, to do most of the thinking.

/

*

 Backtracking algorithm to place the points

*

/

/

*

 x[left]...x[right].

*

/

/

*

 x[1]...[left-1] and x[right+1]...x[n]

/

*

 are already tentatively placed

* /

/* If place returns true,

页码，60/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/* then x[left]...x[right] will have value. */

int

place(int x[], dist_set D , unsigned int n, int Left, int Right)

{

int d_max, found = FALSE;

/

*

1

*

/ if D is empty then

/

*

2

*

/ return TRUE;

/

*

3

*

/ d_max = find_max(D);

/

*

 Check if setting x[Right] = d_max is feasible.

*

/

/

*

4

*

/ if(|x[j]-d_max| D for all 1 j < Left and Right < j n)

{

/

*

5

*

/ x[Right] = d_max; /

*

 Try x[Right] = d_max

*

/

/

*

6

*

/ for(1 j < Left, Right < j n)

/

*

7

*

/ delete(|x[j]-d_max|, D);

/

*

8

*

/ found = place(x, D, n, Left, Right-1);

/

*

9

*

/ if(!found) /

*

 Backtrack

*

/

/

*

10

*

/ for(1 j < Left, Right < j n) /

Undo the deletion

*

/

/

*

11

*

/ insert(|x[j]-d_max:| D);

}

/

*

 If first attempt failed, try to see if setting

*

/

/

*

 x[Left]=x[n]-d_max is feasible

*

/

/

*

12

*

/ if(!found && (|x[n]-d_max-x[j]| D

/

*

13

*

/ for all 1 j < Left and Right < j n))

{

/*14*/ x[Left] = x [n] -d_max; / * Same logic as before */

/*15*/ for(1 j < Left, Right < j n)

页码，61/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/*16*/ delete(|x[n]-d_max -x [j] |, D);

/*17*/ found = place(x, D, n, Left + 1, Right);

/

*

18

*

/ if(!found) /

*

 Backtrack; undo the deletion

*

/

/

*

19

*

/ for(1 j < Left, Right < j n)

/

*

20

*

/ insert(|x[n]-d_max-x[j]|, D);

}

/

*

21

*

/ return found;

}

Figure 10.65 Turnpike reconstruction algorithm: backtracking steps (pseudocode)

Minimax Strategy

The general strategy is to use an evaluation function to quantify the "goodness" of a position. A

position that is a win for a computer might get the value of +1; a draw could get 0; and a

position that the computer has lost would get a - 1. A position for which this assignment can be

determined by examining the board is known as a terminal position.

If a position is not terminal, the value of the position is determined by recursively assuming

optimal play by both sides. This is known as a minimax strategy, because one player (the human)

is trying to minimize the value of the position, while the other player (the computer) is trying

to maximize it.

A successor position of P is any position P

s

 that is reachable from P by playing one move. If the

computer is to move when in some position P, it recursively evaluates the value of all the

successor positions. The computer chooses the move with the largest value; this is the value of

P. To evaluate any successor position P

s

, all of P

s

's successors are recursively evaluated, and

the smallest value is chosen. This smallest value represents the most favorable reply for the

human player.

The code in Figure 10.66 makes the computer's strategy more clear. Lines 1 through 4 evaluate

immediate wins or draws. If neither of these cases apply, then the position is nonterminal.

Recalling that value should contain the maximum of all possible successor positions, line 5

initializes it to the smallest possible value, and the loop in lines 6 through 13 searches for

improvements. Each successor position is recursively evaluated in turn by lines 8 through 10.

This is recursive, because, as we will see, the procedure find_human_move calls find_comp_move.

If the human's response to a move leaves the computer with a more favorable position than that

obtained with the previously best computer move, then the value and best_move are updated. Figure

10.67 shows the procedure for the human's move selection. The logic is virtually identical,

except that the human player chooses the move that leads to the lowest-valued position. Indeed,

it is not difficult to combine these two procedures into one by passing an extra variable, which

indicates whose turn it is to move. This does make the code somewhat less readable, so we have

stayed with separate routines.

Since these routines must pass back both the value of the position and the best move, we pass the

address of two variables that will get this information, by using pointers. The last two

parameters now answer the question "WHERE?" instead of "WHAT? "

页码，62/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/

*

 Recursive procedure to find best move for computer

*

/

/

*

 best_move points to a number from 1-9 indicating square.

*

/

/

*

 Possible evaluations satisfy COMP_LOSS < DRAW < COMP_WIN

*

/

/

*

 Complementary procedure find_human_move is below

*

/

/

*

 board_type is an array; thus board can be changed by place ()

*

/

void

find_comp_move(board_type board, int

*

best_move, int

*

value)

{

int dc, i, response; /

*

 dc means don't care

*

/

/

*

1

*

/ if(full_board(board))

/

*

2

*/ *

value = DRAW;

else

/

*

3

*

/ if(immediate_comp_win(board, best_move))

/

*

4

*

/

 *

value = COMP_WIN;

else

{

/

*

5

*

/

 *

value = COMP_LOSS;

/

*

6

*

/ for(i=1; i<=9; i++) /

*

 try each square

*

/

{

/

*

7

*

/ if(is_empty(board, i))

{

/

*

8

*

/ place(board, i, COMP);

/

*

9

*

/ find_human_move(board, &dc, &response);

/

*

10

*

/ unplace(board, i); /

*

 Restore board

*

/

/

*

11

*

/ if(response >

*

 value) /

*

 Update best move

*

/

{

/

*

12

*

/

 *

value = response;

/

*

13

*

/

 *

best_move = i;

}

}

页码，63/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

}

}

}

Figure 10.66 Minimax tic-tac-toe algorithm: computer selection

void

find_human_move(board_type board, int

*

best_move, int *value)

{

int dc, i, response; /

*

 dc means don't care

*

/

/

*

1

*

/ if(full_board(board))

/

*

2

*

/

 *

value = DRAW;

else

/

*

3

*

/ if(immediate_human_win(board, best_move))

/

*

4

*

/

 *

value = COMP_LOSS;

else

{

/

*

5

*

/

 *

value = COMP_WIN;

/

*

6

*

/ for(i=1; i<=9; i++) /

*

 try each square

*

/

{

/

*

7

*

/ if(is_empty(board, i))

{

/

*

8

*

/ place(board, i, HUMAN);

/

*

9

*

/ find_comp_move(board, &dc, &response);

/

*

10

*

/ unplace(board, i); /

*

 Restore board

*

/

/

*

11

*

/ if(response <

*

 value) /

*

 Update best move

*/

{

/*

12

*

/

 *

value = response;

/

*

13

*

/

 *

best_move = i;

}

}

}

页码，64/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

}

}

Figure 10.67 Min-max tic-tac-toe algorithm: human selection

As an example, in Figure 10.66, best_move contains the address where the best move can be placed.

find_comp_move can examine or alter the data at that address by accessing

*

best_move. Line 9

shows how the calling routine should behave. Since the caller has two integers prepared to store

the data, and find_human_move only wants the addresses of these two integers, the address

operator (&) is used.

If the & operator is not used at line 9, and both dc and response are zero (which would be

typical of uninitialized data), the find_human_move will try to place its best move and position

value in memory location zero. Of course, this is not what was intended, and will almost

certainly result in a program crash (try it!). This is the most common error when using the scanf

family of library routines.

We leave supporting routines as an exercise. The most costly computation is the case where the

computer is asked to pick the opening move. Since at this stage the game is a forced draw, the

computer selects square 1.* A total of 97,162 positions were examined, and the calculation took

2.5 seconds on a VAX 8800. No attempt was made to optimize the code. When the computer moves

second, the number of positions examined is 5,185 if the human selects the center square, 9,761

when a corner square is selected, and 13,233 when a noncorner edge square is selected.

*We numbered the squares starting from the top left and moving right. However, this is only important for the supporting
routines.

For more complex games, such as checkers and chess, it is obviously infeasible to search all the

way to the terminal nodes.ç In this case, we have to stop the search after a certain depth of
recursion is reached. The nodes where the recursion is stopped become terminal nodes. These

terminal nodes are evaluated with a function that estimates the value of the position. For

instance, in a chess program, the evaluation function measures such variables as the relative

amount and strength of pieces and positional factors. The evaluation function is crucial for

success, because the computer's move selection is based on maximizing this function. The best

computer chess programs have surprisingly sophisticated evaluation functions.

çIt is estimated that if this search were conducted for chess, at least 10100 positions would be examined for the first
move. Even if the improvements described later in this section were incorporated, this number could not be reduced to a
practical level.

Nevertheless, for computer chess, the single most important factor seems to be number of moves of

look-ahead the program is capable of. This is sometimes known as ply; it is equal to the depth of

the recursion. To implement this, an extra parameter is given to the search routines.

The basic method to increase the look-ahead factor in game programs is to come up with methods

that evaluate fewer nodes without losing any information. One method which we have already seen

is to use a table to keep track of all positions that have been evaluated. For instance, in the

course of searching for the first move, the program will examine the positions in Figure 10.68.

If the values of the positions are saved, the second occurrence of a position need not be

recomputed; it essentially becomes a terminal position. The data structure that records this is

known as a transposition table; it is almost always implemented by hashing. In many cases, this

can save considerable computation. For instance, in a chess endgame, where there are relatively

few pieces, the time savings can allow a search to go several levels deeper.

- Pruning

页码，65/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Probably the most significant improvement one can obtain in general is known as -

pruning. Figure 10.69 shows the trace of the recursive calls used to evaluate some hypothetical

position in a hypothetical game. This is commonly referred to as a game tree. (We have avoided

the use of this term until now, because it is somewhat misleading: no tree is actually

constructed by the algorithm. The game tree is just an abstract concept.) The value of the game

tree is 44.

Figure 10.68 Two searches that arrive at identical position

Figure 10.70 shows the evaluation of the same game tree, with several unevaluated nodes. Almost

half of the terminal nodes have not been checked. We show that evaluating them would not change

the value at the root.

First, consider node D. Figure 10.71 shows the information that has been gathered when it is time

to evaluate D. At this point, we are still in find_human_move and are contemplating a call to

find_comp_move on D. However, we already know that find_human_move will return at most 40, since

it is a min node. On the other hand, its max node parent has already found a sequence that

guarantees 44. Nothing that D does can possibly increase this value. Therefore, D does not need

to be evaluated. This pruning of the tree is known as pruning. An identical situation occurs

at node B. To implement pruning, get_comp_move passes its tentative maximum () to

get_human_move. If the tentative minimum of get_human_move falls below this value, then

get_human_move returns immediately.

A similar thing happens at nodes A and C. This time, we are in the middle of a find_comp_move and

are about to make a call to find_human_move to evaluate C. Figure 10.72 shows the situation that

is encountered at node C. However, the sfind_human_move, at the min level, which has called

find_comp_move, has already determined that it can force a value of at most 44 (recall that low

values are good for the human side). Since find_comp_move has a tentative maximum of 68, nothing

that C does will affect the result at the min level. Therefore, C should not be evaluated. This

type of pruning is known as pruning; it is the symmetric version of pruning. When both

techniques are combined, we have - pruning.

页码，66/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.69 A hypothetical game tree

Figure 10.70 A pruned game tree

Figure 10.71 The node marked ? is unimportant

页码，67/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.72 The node marked ? is unimportant

Implementing - pruning requires surprisingly little code. It is not as difficult as one

might think, although many programmers have a very hard time doing it without looking at a

reference book.

Figure 10.73 shows half of the - pruning scheme (minus type

declarations); you should have no trouble coding the other half.

/* Same as before, but perform - pruning. */

/* The main routine should make the call with = COMP_LOSS,

 = COMP_WIN. */

void

find_comp_move(board_type board, int *best_move, int *value,

int , int)

{

int dc, i, response; /* dc means don't care */

/*1*/ if(full_board(board))

/*2*/ *value = DRAW;

else

/*3*/ if(immediate-comp_win(board, best_move))

/*4*/ *value = COMP_WIN;

else

{

/*5*/ *value = ;

/*6*/ for(i=1; (i<=9) && (*value<); i++) /* try each square */

{

/*7*/ if(is_empty(board, i))

{

/*8*/ place(board, i, COMP);

页码，68/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/*9*/ find_human_move(board, &dc, &response, *value,);

/*10*/ unplace(board, i); /* Restore board */

/*11*/ if(response >* value) /* Update best move */

{

/*12*/ *value = response;

/*13*/ *best_move = i;

}

}

}

}

}

Figure 10.73 Min-max tic-tac-toe algorithm with - pruning: Computer selection.

To take full advantage of - pruning, game programs usually try to apply the evaluation

function to nonterminal nodes in an attempt to place the best moves early in the search. The

result is even more pruning than one would expect from a random ordering of the nodes. Other

techniques, such as searching deeper in more active lines of play, are also employed.

In practice, - pruning limits the searching to only nodes, where n is the size

of the full game tree. This a huge saving and means that searches using - pruning can go

twice as deep as compared to an unpruned tree. Our tic-tac-toe example is not ideal, because

there are so many identical values, but even so, the initial search of 97,162 nodes is reduced to

4,493 nodes. (These counts include nonterminal nodes).

In many games, computers are among the best players in the world. The techniques used are very

interesting, and can be applied to more serious problems. More details can be found in the

references.

Summary

This chapter illustrates five of the most common techniques found in algorithm design. When

confronted with a problem, it is worthwhile to see if any of these methods apply. A proper choice

of algorithm, combined with judicious use of data structures, can often lead quickly to efficient

solutions.

Exercises

10.1 Show that the greedy algorithm to minimize the mean completion time for multiprocessor job

scheduling works.

页码，69/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

10.2 The input is a set of jobs j

1

, j

2

, . . . , j

n

, each of which takes one time unit to

complete. Each job j

i

 erans d

i

 dollars if it is completed by the time limit t

i

, but no money if

completed after the time limit.

(a) Give an O(n

2

) greedy algorithm to solve the problem.

**(b) Modify your algorithm to obtain an O(n log n) time bound. Hint: The time bound is due

entirely to sorting the jobs by money. The rest of the algorithm can be implemented, using the

disjoint set data structure, in o(n log n).

10.3 A file contains only colons, spaces, newline, commas, and digits in the following frequency:

colon (100), space (605), newline (100), commas (705), 0 (431), 1 (242), 2 (176), 3 (59), 4

(185), 5 (250), 6 (174), 7 (199), 8 (205), 9 (217). Construct the Huffman code.

10.4 Part of the encoded file must be a header indicating the Huffman code. Give a method for

constructing the header of size at most O(n) (in addition to the symbols), where n is the number

of symbols.

10.5 Complete the proof that Huffman's algorithm generates an optimal prefix code.

10.6 Show that if the symbols are sorted by frequency, Huffman's algorithm can be implemented in

linear time.

10.7 Write a program to implement file compression (and uncompression) using Huffman's algorithm.

*10.8 Show that any on-line bin-packing algorithm can be forced to use at least the optimal

number of bins, by considering the following sequence of items: n items of size , n items

of size , n items of size .

10.9 Explain how to implement first fit and best fit in O(n log n) time.

10.10 Show the operation of all of the bin-packing strategies discussed in Section 10.1.3 on the

input 0.42, 0.25, 0.27, 0.07, 0.72, 0.86, 0.09, 0.44, 0.50, 0.68, 0.73, 0.31, 0.78, 0.17, 0.79,

0.37, 0.73, 0.23, 0.30.

10.11 Write a program that compares the performance (both in time and number of bins used) of the

various bin packing heuristics.

10.12 Prove Theorem 10.7.

10.13 Prove Theorem 10.8.

*10.14 n points are placed in a unit square. Show that the distance between the closest pair is O

页码，70/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

(n

-1/2

).

*10.15 Argue that for the closest-points algorithm, the average number of points in the strip is

(. Hint: Use the result of the previous exercise.

10.16 Write a program to implement the closest-pair algorithm.

10.17 What is the asymptotic running time of quickselect, using a median-of-median-of-three

partitioning strategy?

10.18 Show that quickselect with median-of-median-of-seven partitioning is linear. Why is median-

of-median-of-seven partitioning not used in the proof?

10.19 Implement the quickselect algorithm in Chapter 7, quickselect using median-of-median-of-

five patitioning, and the sampling algorithm at the end of Section 10.2.3. Compare the running

times.

10.20 Much of the information used to compute the median-of-median-of-five is thrown away. Show

how the number of comparisons can be reduced by more careful use of the information.

*10.21 Complete the analysis of the sampling algorithm described at the end of Section 10.2.3,

and explain how the values of and s are chosen.

10.22 Show how the recursive multiplication algorithm computes xy, where x = 1234 and y = 4321.

Include all recursive computations.

10.23 Show how to multiply two complex numbers x = a + bi and y = c + di using only three

multiplications.

10.24 (a) Show that

x

l

y

r

 + x

r

y

l

 = (x

l

 + x

r

)(y

l

 + y

r

) - x

l

y

l

 - x

r

y

r

(b) This gives an O(n

1.59

) algorithm to multiply n-bit numbers. Compare this method to the

solution in the text.

10.25 * (a) Show how to multiply two numbers by solving five problems that are roughly one-third

of the original size.

**(b) Generalize this problem to obtain an O(n

1+

) algorithm for any constant > 0.

(c) Is the algorithm in part (b) better than O(n log n)?

10.26 Why is it important that Strassen's algorithm does not use commutativity in the

multiplication of 2 X 2 matrices?

页码，71/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

10.27 Two 70 X 70 matrices can be multiplied using 143,640 multiplications. Show how this can be

used to improve the bound given by Strassen's algorithm.

10.28 What is the optimal way to compute A

1

A

2

A

3

A

4

A

5

A

6

, where the dimensions of the matrices are:

A

l

: 10 X 20, A

2

: 20 X 1, A

3

: 1 X 40, A

4

: 40 X 5, A

5

: 5 X 30, A

6

: 30 X 15?

10.29 Show that none of the following greedy algorithms for chained matrix multiplication work.

At each step

(a) Compute the cheapest multiplication.

(b) Compute the most expensive multiplication.

(c) Compute the multiplication between the two matrices M

i

 and M

i+1

, such that the number of

columns in M

i

 is minimized (breaking ties by one of the rules above).

10.30 Write a program to compute the best ordering of matrix multiplication. Include the routine

to print out the actual ordering.

10.31 Show the optimal binary search tree for the following words, where the frequency of

occurrence is in parentheses: a (0.18), and (0.19), I (0.23), it (0.21) , or (0.19).

*10.32 Extend the optimal binary search tree algorithm to allow for unsuccessful searches. In

this case, q

j

, for 1 j < n, is the probability that a search is performed for any word W

satisfying wj < W < w
j+1

. q

0

 is the probability of performing a search for W < w

1

, and q

n

is the

probability of performing a search for W > w

n

. Notice that .

*10.33 Suppose C

i,i

 = 0 and that otherwise

Suppose that W satisfies the quadrangle inequality, namely, for all i i' j j',

W

i, j

 + W

i',j

' W

i',j

 + W

i, j

'

Suppose further, that W is monotone: If i i' and j' j', then Wi,j W

i

',,j' .

(a) Prove that C satisfies the quadrangle inequality.

(b) Let R

i, j

 be the largest k that achieves the minimum C

i,k-1

 + C

k,j

. (That is, in case of

ties, choose the largest k). Prove that

页码，72/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

R

i, j

 R

i, j+1

 R

i+1,j+1

(c) Show that R is nondecreasing along each row and column.

(d) Use this to show that all entries in C can be computed in O(n

2

) time.

(e) Which of the dynamic programming algorithms can be solved in O(n

2

) using these techniques?

10.34 Write a routine to reconstruct the shortest paths from the algorithm in Section 10.3.4.

10.35 Examine the random number generator on your system. How random is it?

10.36 Write the routines to perform insertion, deletion, and searching in skip lists.

10.37 Give a formal proof that the expected time for the skip list operations is O(log n).

10.38 Figure 10.74 shows a routine to flip a coin, assuming that random returns an integer (which

is prevalent in many systems). What is the expected performance of the skip list algorithms if

the random number generator uses a modulus of the form m = 2

b

 (which is unfortunately prevalent

on many systems)?

10.39 (a) Use the exponentiation algorithm to prove that 2

340

 1(mod 341).

(b) Show how the randomized primality test works for n = 561 with several choices of a.

10.40 Implement the turnpike reconstruction algorithm.

10.41 Two point sets are homometric if they yield the same distance set and are not rotations of

each other. The following distance set gives two distinct point sets: 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 16, 17 . Find the two point sets.

enum coin_side { heads, tails };

typedef enum coin_side coin_side;

coin_side

flip(void)

{

if((rand() % 2) == 0)

return heads;

else

return tails;

}

页码，73/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.74 Questionable coin flipper

Figure 10.75 Game tree, which can be pruned

10.42 Extend the reconstruction algorithm to find all homometric point sets given a distance set.

10.43 Show the result of - pruning the tree in Figure 10.75.

10.44 (a) Does the code in Figure 10.73 implement pruning or pruning?

(b) Implement the complementary routine.

10.45 Write the remaining procedures for tic-tac-toe.

10.46 The one-dimensional circle packing problem is as follows: You have n circles of radii r

1

,

r

2

, . . . , r

n.

 These circles are packed in a box such that each circle is tangent to the bottom

of the box, and are arranged in the original order. The problem is to find the width of the

minimum-sized box.

Figure 10.76 shows an example with circles of radii 2, 1, 2 respectively. The minimum-sized box

has width

*10.47 Suppose that the edges in an undirected graph G satisfy the triangle inequality: c

u,v

 +

c

v,w

 c

u,w

. Show how to compute a traveling salesman tour of cost at most twice optimal.

Hint: Construct a minimum spanning tree.

*10.48 You are a tournament director and need to arrange a round robin tournament among n = 2

k

players. In this tournament, everyone plays exactly one game each day; after n - 1 days, a match

has occurred between every pair of players. Give an algorithm to do this.

页码，74/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.76 Sample for circle packing problem

10.49 (a) Prove that in a round robin tournament it is always possible to arrange the players in

an order p

i1,

p

2,

p

in

 such that for all 1 j < n, p

ij

 has won the match against pij + 1.

(b) Gve an O(n log n) algorithm to find one such arrangement. Your algorithm may serve as a proof

for part (a).

*10.50 We are given a set P = p

1

, p

2

, . . . , p

n

 of n points in a plane. A Voronoi diagram is a

partition of the plane into n regions Ri such that all points in Ri are closer to

p

i than any

other point in P. Figure 10.77 shows a sample Voronoi diagram for seven (nicely arranged) points.

Give an O(n log n) algorithm to construct the Voronoi diagram.

*10.51 A convex polygon is a polygon with the property that any line segment whose endpoints are

on the polygon lies entirely within the polygon. The convex hull problem consists of finding the

smallest (area) convex polygon which encloses a set of points in the plane. Figure 10.78 shows

the convex hull for a set of 40 points. Give an O(n log n) algorithm to find the convex hull.

Figure 10.77 Voronoi diagram

页码，75/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 10.78 Example of a convex hull

*10.52 Consider the problem of right-justifying a paragraph. The paragraph contains a sequence of

words w

1

, w

2

, . . . ,w

n

 of length a

1

, a

2

, . . . , a

n

, which we wish to break into lines of length

L. Words are separated by blanks whose ideal length is b (millimeters), but blanks can stretch or

shrink as necessary (but must be >0), so that a line w

i

w

i+1

. . . w

j

 has length exactly L.

However, for each blank b' we charge |b' - b ugliness points. The exception to this is the last

line, for which we charge only if b' < b (in other words, we charge only for shrinking), since

the last line does not need to be justified. Thus, if b

i

 is the length of the blank between a

i

and a

i+1

, then the ugliness of setting any line (but the last) w

i

w

i+1

. . . w

j

for j > i is

, where b' is the average size of a blank on this line. This is

true of the last line only if b' < b, otherwise the last line is not ugly at all.

(a) Give a dynamic programming algorithm to find the least ugly setting of w

1

, w

2

, . . ., w

n

into

lines of length L. Hint: For i = n, n - 1, . . . , 1, compute the best way to set w

j

, w

i+1

, . . .

, w

n

(b) Give the time and space complexities for your algorithm (as a function of the number of

words, n).

(c) Consider the special case where we are using a line printer instead of a laser printer, and

assume the optimal value of b is 1 (space). In this case, no shrinking of blanks is allowed,

since the next smallest blank space would be 0. Give a linear-time algorithm to generate the

least ugly setting on a line printer.

*10.53 The longest increasing subsequence problem is as follows: Given numbers a

1

, a

2

, . . ., a

n

,

find the maximum value of k such that a

i1

 < a

i2

 < < a

ik

, and i

1

 < i

2

 <

 < i

k

. As an example, if the input is 3, 1, 4, 1, 5, 9, 2, 6, 5, the maximum increasing

subsequence has length four (1, 4, 5, 9 among others). Give an O(n

2

) algorithm to solve the

longest increasing subsequence problem.

*10.54 The longest common subsequence problem is as follows: Given two sequences A = a

1

, a

2

, . .

. , a

m

, and B = b

1

, b

2

, . . . , b

n

, find the length, k, of the longest sequence C = c

1

, c

2

, . . .

, c

k

 such that C is a subsequence of both A and B. As an example, if

A = d, y, n, a, m, i, c

页码，76/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

and

B = p, r, o, g, r, a, m, m, i, n, g,

then the longest common subsequence is a,m and has length 2. Give an algorithm to solve the

longest common subsequence problem. Your algorithm should run in O(mn) time.

*10.55 The pattern matching problem is as follows: Given a string S of text, and a pattern P,

find the first occurrence of P in S. Approximate pattern matching allows k mismatches of three

types:

1. A character can be in S that is not in P.

2. A character can be in P that is not in S.

3. P and S can differ in a position.

As an example, if we are searching for the pattern "textbook" with at most three mismatches in

the string "data structures txtborkk", we find a match (insert an e, change an r to an o, delete

a k). Give an O(mn) algorithm to solve the approximate string matching problem, where m = |P| and

n = |S|.

*10.56 One form of the knapsack problem is as follows: We are given a set of integers A = a

1

, a

2

,

. . . , a

n

 and an integer K. Is there a subset of A whose sum is exactly K?

(a) Give an algorithm that solves the knapsack problem in O(nK) time.

(b) Why does this not show that P = NP?

*10.57 You are given a currency system with coins of (decreasing) value c

1

, c

2

, . . . , c

n

 cents.

(a) Give an algorithm that computes the minimum number of coins required to give K cents in

change.

(b) Give an algorithm that computes the number of different ways to give K cents in change.

*10.58 Consider the problem of placing eight queens on an (eight by eight) chess board. Two

queens are said to attack each other if they are on the same row, column, or (not necessarily

main) diagonal.

(a) Give a randomized algorithm to place eight nonattacking queens on the board.

(b) Give a backtracking algorithm to solve the same problem.

(c) Implement both algorithms and compare the running time.

distance

shortest(s, t, G)

{

distance d

t

,tmp;

页码，77/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

if(s == t)

return 0;

d

t

 = ;

for each vertex v adjacent to s

{

tmp = shortest(v, t, G);

if(c

s,v

 + tmp < d

t

)

d

t

 = c

s,v

 + tmp;

}

return d

t

}

Figure 10.79 Recursive shortest path algorithm

*10.59 In the game of chess, a knight in row r and column c may move to row 1 r' B and

column 1 c' B (where B is the size of the board) provided that either

|r - r'| = 2 and |c - c'| = 1

or

|r - r'| = 1 and |c - c'| = 2

A knight's tour is a sequence of moves that visits all squares exactly once before returning to

the starting point.

(a) If B is odd, show that a knight's tour cannot exist.

(b) Give a backtracking algorithm to find a knight's tour.

10.60 Consider the recursive algorithm in Figure 10.79 for finding the shortest weighted path in

an acyclic graph, from s to t.

(a) Why does this algorithm not work for general graphs?

(b) Prove that this algorithm terminates for acyclic graphs.

(c) What is the worst-case running time of the algorithm?

References

The original paper on Huffman codes is [21]. Variations on the algorithm are discussed in [29],

页码，78/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

[31], and [32]. Another popular compression scheme is Ziv-Lempel encoding [52], [53]. Here the

codes have a fixed length but represent strings instead of characters. [3] and [34] are good

surveys of the common compression schemes.

The analysis of bin-packing heuristics first appeared in Johnson's Ph.D. thesis and was published

in [22]. The improved lower bound for on-line bin packing given in Exercise 10.8 is from [50];

this result has been improved further in [35]. [44] describes another approach to on-line bin

packing.

Theorem 10.7 is from [6]. The closest points algorithm appeared in [45]. [47] describes the

turnpike reconstruction problem and its applications. Two books on the relatively new field of

computational geometry are [14] and [40]. [2] contains the lecture notes for a computational

geometry course taught at MIT; it includes an extensive bibliography.

The linear-time selection algorithm appeared in [8]. [17] discusses the sampling approach that

finds the median in 1.5n expected comparisons. The O(n

1.59

) multiplication is from [23].

Generalizations are discussed in [9] and [24]. Strassen's algorithm appears in the short paper

[48]. The paper states the results and not much else. Pan [38] gives several divide and conquer

algorithms, including the one in Exercise 10.27. The best known bound is O(n

2.376

), which is due

to Coppersmith and Winograd [13].

The classic references on dynamic programming are the books [4] and [5]. The matrix ordering

problem was first studied in [19]. It was shown in [20] that the problem can be solved in O(n log

n) time.

An O(n

2

) algorithm was provided for the construction of optimal binary search trees by Knuth

[25]. The all-pairs shortest-path algorithm is from Floyd [16]. A theoretically better O(n

3

(log

logn/logn)

l/3

) algorithm is given by Fredman [18], but not surprisingly, it is not practical.

Under certain conditions, the running time of dynamic programs can automatically be improved by a

factor of n or more. This is discussed in Exercise 10.33, [15], and [51].

The discussion of random number generators is based on [39]. Park and Miller attribute the

portable implementation to Schrage [46]. Skip lists are discussed by Pugh in [41]. The randomized

primality-testing algorithm is due to Miller [36] and Rabin [43]. The theorem that at most (n -

9)/4 values of a fool the algorithm is from Monier [37]. Other randomized algorithms are

discussed in [42].

More information on - pruning can be found in [1], [26], and [27]. The top programs that

play chess, checkers, Othello, and backgammon have all achieved world class status. [33]

describes an Othello program. The paper appears in a special issue on computer games (mostly

chess); this issue is a gold mine of ideas. One of the papers describes the use of dynamic

programming to solve chess endgames completely when only a few pieces are left on the board.

Related research has resulted in the change of the 50-move rule in certain cases.

Exercise 10.41 is solved in [7]. It is the only known case of a homometric point set with no

duplicate distances. Determining whether any others exist for n > 6 is open. Christofides [12]

gives a solution to Exercise 10.47, and also an algorithm which generates a tour at most

optimal. Exercise 10.52 is discussed in [28]. Exercise 10.55 is solved in [49]. An O(kn)

algorithm is given in [30]. Exercise 10.57 is discussed in [10], but do not be misled by the

title of the paper.

1. B. Abramson, "Control Strategies for Two-Player Games," ACM Computing Surveys, 21 (1989), 137-

161.

2. A. Aggarwal and J. Wein, Computational Geometry: Lecture Notes for 18.409, MIT Laboratory for

Computer Science, 1988.

页码，79/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

3. T. Bell, I. H. Witten, and J. G. Cleary, "Modeling for Text Compression," ACM Computing

Surveys, 21 (1989), 557-591.

4. R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

5. R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming, Princeton University Press,

Princeton, NJ, 1962.

6. J. L. Bentley, D. Haken, and J. B. Saxe, "A General Method for Solving Divide-and-Conquer

Recurrences," SIGACT News, 12 (1980), 36-44.

7. G. S. Bloom, "A Counterexample to the Theorem of Piccard," Journal of Combinatorial Theory A

(1977), 378-379.

8. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, "Time Bounds for

Selection," Journal of Computer and System Sciences 7 (1973), 448-461.

9. A. Borodin and J. I. Munro, The Computational Complexity of Algebraic and Numerical Problems,

American Elsevier, New York, 1975.

10. L. Chang and J. Korsh, "Canonical Coin Changing and Greedy Solutions," Journal of the ACM 23

(1976), 418-422.

12. N. Christofides, "Worst-case Analysis of a New Heuristic for the Traveling Salesman Problem,"

Management Science Research Report #388, Carnegie-Mellon University, Pittsburgh, PA, 1976.

13. D. Coppersmith and S. Winograd, "Matrix Multiplication via Arithmetic Progressions,"

Proceedings of the Nineteenth Annual ACM Symposium of the Theory of Computing (1987), 1-6.

14. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, 1987.

15. D. Eppstein, Z. Galil, R. Giancarlo, "Speeding up Dynamic Programming," Proceedings of the

Twenty-ninth Annual IEEE Symposium on the Foundations of Computer Science, (1988), 488-495.

16. R. W. Floyd, "Algorithm 97: Shortest Path," Communications of the ACM 5 (1962), 345.

17. R. W. Floyd and R. L. Rivest, "Expected Time Bounds for Selection," Communications of the ACM

18 (1975), 165-172.

18. M. L. Fredman, "New Bounds on the Complexity of the Shortest Path Problem," SIAM Journal on

Computing 5 (1976), 83-89.

19. S. Godbole, "On Efficient Computation of Matrix Chain Products," IEEE Transactions on

Computers 9 (1973), 864-866.

页码，80/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

20. T. C. Hu and M. R. Shing, "Computations of Matrix Chain Products, Part I," SIAM Journal on

Computing 11 (1982), 362-373.

21. D. A. Huffman, "A Method for the Construction of Minimum Redundancy Codes," Proceedings of

the IRE 40 (1952), 1098-1101.

22. D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, "Worst-case

Performance Bounds for Simple One-Dimensional Packing Algorithms," SIAM Journal on Computing, 3

(1974), 299-325.

23. A. Karatsuba and Y. Ofman, "Multiplication of Multi-digit Numbers on Automata," Doklady

Akademii Nauk SSSR 145 (1962), 293-294.

24. D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, second

edition, Addison-Wesley, Reading, MA, 1981.

25. D. E. Knuth, "Optimum Binary Search Trees," Acta Informatica 1 (1971), 14-25.

26. D. E. Knuth and R. W. Moore, "Estimating the Efficiency of Backtrack Programs," Mathematics

of Computation 29, (1975) 121-136.

27. D. E. Knuth, "An Analysis of Alpha-Beta Cutoffs," Artificial Intelligence 6 (1975), 293-326.

28. D. E. Knuth, T

E

X and Metafont, New Directions in Typesetting, Digital Press, Bedford, MA,

1981.

29. D. E. Knuth, "Dynamic Huffman Coding,"Journal of Algorithms 6 (1985), 163-180.

30. G. M. Landau and U. Vishkin, "Introducing Efficient Parallelism into Approximate String

Matching and a New Serial Algorithm," Proceedings of the Eighteenth Annual ACM Symposium on

Theory of Computing (1986), 220-230.

31. L. L. Larmore, "Height-Restricted Optimal Binary Trees," SlAM Journal on Computing 16 (1987),

1115-1123.

32. L. L. Larmore and D. S. Hirschberg, "A Fast Algorithm for Optimal Length-Limited Huffman

Codes," Journal of the ACM 37 (1990), 464-473.

33. K. Lee and S. Mahajan, "The Development of a World Class Othello Program," Artificial

Intelligence 43 (1990), 21-36.

34. D. A. Lelewer and D. S. Hirschberg, "Data Compression," ACM Computing Surveys 19 (1987), 261-

296.

35. F. M. Liang, "A Lower Bound for On-line Bin Packing," Information Processing Letters 10

(1980), 76-79.

页码，81/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

36. G. L. Miller, "Riemann's Hypothesis and Tests for Primality," Journal of Computer and System

Sciences 13 (1976), 300-317.

37. L. Monier, "Evaluation and Comparison of Two Efficient Probabilistic Primality Testing

Algorithms," Theoretical Computer Science 12 (1980), 97-108.

38. V. Pan, "Strassen's Algorithm is Not Optimal," Proceedings of the Nineteenth Annual IEEE

Symposium on the Foundations of Computer Science (1978), 166-176.

39. S. K. Park and K. W. Miller, "Random Number Generators: Good Ones are Hard To Find,"

Communications of the ACM 31 (1988), 1192-1201.

40. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,

New York, NY, 1985.

41. W. Pugh, "Skip Lists: A Probabilistic Alternative to Balanced Trees," Communications of the

ACM 33 (1990), 668-676.

42. M. O. Rabin, "Probabilistic Algorithms," in Algorithms and Complexity, Recent Results and New

Directions (J. F. Traub, ed.), Academic Press, New York, 1976, 21-39.

43. M. O. Rabin, "Probabilistic Algorithms for Testing Primality," Journal of Number Theory, 12

(1980), 128-138.

44. P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee, "On-line Bin Packing in Linear Time,"

Journal of Algorithms 10 (1989), 305-326.

45. M. I. Shamos and D. Hoey, "Closest-Point Problems," Proceedings of the Sixteenth Annual IEEE

Symposium on the Foundations of Computer Science (1975), 151-162.

46. L. Schrage, "A More Portable FORTRAN Random Number Generator," ACM Transactions on

Mathematics Software 5 (1979), 132-138.

47. S. S. Skiena, W. D. Smith, and P. Lemke, "Reconstructing Sets From Interpoint Distances,"

Proceedings of the Sixth Annual ACM Symposium on Computational Geometry (1990), 332-339.

48. V. Strassen, "Gaussian Elimination is Not Optimal," Numerische Mathematik 13 (1969), 354-356.

49. R. A. Wagner and M. J. Fischer, "The String-to-String Correction Problem," Journal of the ACM

21 (1974), 168-173.

50. A. C. Yao, "New Algorithms for Bin Packing," Journal of the ACM 27 (1980), 207-227.

51. F. F. Yao, "Efficient Dynamic Programming Using Quadrangle Inequalities," Proceedings of the

Twelfth Annual ACM Symposium on the Theory of Computing (1980), 429-435.

页码，82/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

52. J. Ziv and A. Lempel, "A Universal Algorithm for Sequential Data Compression," IEEE

Transactions on Information Theory IT23 (1977), 337-343.

53. J. Ziv and A. Lempel, "Compression of Individual Sequences via Variable-rate Coding," IEEE

Transactions on Information Theory IT24 (1978), 530-536.

Go to Chapter 11 Return to Table of Contents

页码，83/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

