
CHAPTER 10: 

ALGORITHM DESIGN TECHNIQUES 

So far, we have been concerned with the efficient implementation of algorithms. 

We have seen that when an algorithm is given, the actual data structures need not 

be specified. It is up to the programmer to choose the approriate data structure 

in order to make the running time as small as possible.  

In this chapter, we switch our attention from the implementation of algorithms to 

the design of algorithms. Most of the algorithms that we have seen so far are 

straightforward and simple. Chapter 9 contains some algorithms that are much more 

subtle, and some require an argument (in some cases lengthy) to show that they 

are indeed correct. In this chapter, we will focus on five of the common types of 

algorithms used to solve problems. For many problems, it is quite likely that at 

least one of these methods will work. Specifically, for each type of algorithm we 

will  

 See the general approach.  

 Look at several examples (the exercises at the end of the chapter provide 

many more examples).  

 Discuss, in general terms, the time and space complexity, where appropriate. 

10.1. Greedy Algorithms 

The first type of algorithm we will examine is the greedy algorithm. We have 

already seen three greedy algorithms in Chapter 9: Dijkstra's, Prim's, and 

Kruskal's algorithms. Greedy algorithms work in phases. In each phase, a decision 

is made that appears to be good, without regard for future consequences. 

Generally, this means that some local optimum is chosen. This "take what you can 

get now" strategy is the source of the name for this class of algorithms. When 

the algorithm terminates, we hope that the local optimum is equal to the global 

optimum. If this is the case, then the algorithm is correct; otherwise, the 

algorithm has produced a suboptimal solution. If the absolute best answer is not 

required, then simple greedy algorithms are sometimes used to generate 

approximate answers, rather than using the more complicated algorithms generally 

required to generate an exact answer.  

There are several real-life examples of greedy algorithms. The most obvious is 

the coin-changing problem. To make change in U.S. currency, we repeatedly 

dispense the largest denomination. Thus, to give out seventeen dollars and sixty-

one cents in change, we give out a ten-dollar bill, a five-dollar bill, two one-

dollar bills, two quarters, one dime, and one penny. By doing this, we are 

guaranteed to minimize the number of bills and coins. This algorithm does not 

work in all monetary systems, but fortunately, we can prove that it does work in 

the American monetary system. Indeed, it works even if two-dollar bills and 
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fifty-cent pieces are allowed.  

Traffic problems provide an example where making locally optimal choices does not 

always work. For example, during certain rush hour times in Miami, it is best to 

stay off the prime streets even if they look empty, because traffic will come to 

a standstill a mile down the road, and you will be stuck. Even more shocking, it 

is better in some cases to make a temporary detour in the direction opposite your 

destination in order to avoid all traffic bottlenecks.  

In the remainder of this section, we will look at several applications that use 

greedy algorithms. The first application is a simple scheduling problem. 

Virtually all scheduling problems are either NP-complete (or of similar difficult 

complexity) or are solvable by a greedy algorithm. The second application deals 

with file compression and is one of the earliest results in computer science. 

Finally, we will look at an example of a greedy approximation algorithm.  

10.1.1. A Simple Scheduling Problem 

We are given jobs j

1

, j

2

, . . . , j

n

, all with known running times t

1

, t

2

, . . . 

, t

n

, respectively. We have a single processor. What is the best way to schedule 

these jobs in order to minimize the average completion time? In this entire 

section, we will assume nonpreemptive scheduling: Once a job is started, it must 

run to completion.  

As an example, suppose we have the four jobs and associated running times shown 

in Figure 10.1. One possible schedule is shown in Figure 10.2. Because j

1

 

finishes in 15 (time units), j

2

 in 23, j

3

 in 26, and j

4

 in 36, the average 

completion time is 25. A better schedule, which yields a mean completion time of 

17.75, is shown in Figure 10.3.  

The schedule given in Figure 10.3 is arranged by shortest job first. We can show 

that this will always yield an optimal schedule. Let the jobs in the schedule be 

j

i1

, j

i2

, . . . , j

in

. The first job finishes in time t

i1

. The second job finishes 

after t

i1

 + t

i2

, and the third job finishes after t

i1

 + t

i2

 + t

i3

. From this, we 

see that the total cost, C, of the schedule is  

  

(10.1) 

  

(10.2) 

Job  Time 
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--------- 

 j
1    15

    

 

 j
2     8

    

 

 j
3     3

    

 

 j
4    10

    

 

Figure 10.1 Jobs and times 

  

Figure 10.2 Schedule #1 

  

Figure 10.3 Schedule #2 (optimal) 

Notice that in Equation (10.2), the first sum is independent of the job ordering, 

so only the second sum affects the total cost. Suppose that in an ordering there 

exists some x > y such that t

ix

 < t

iy

. Then a calculation shows that by swapping 

j

ix

 and j

iy

, the second sum increases, decreasing the total cost. Thus, any 

schedule of jobs in which the times are not monotonically nonincreasing must be 

suboptimal. The only schedules left are those in which the jobs are arranged by 

smallest running time first, breaking ties arbitrarily.  

This result indicates the reason the operating system scheduler generally gives 

precedence to shorter jobs.  

The Multiprocessor Case 

We can extend this problem to the case of several processors. Again we have jobs 

j

1

, j

2

, . . . , j

n

, with associated running times t

1

, t

2

, . . . , t

n

, and a number 

P of processors. We will assume without loss of generality that the jobs are 

ordered, shortest running time first. As an example, suppose P = 3, and the jobs 

are as shown in Figure 10.4.  

Figure 10.5 shows an optimal arrangement to minimize mean completion time. Jobs 

j

1

, j

4

, and j

7

 are run on Processor 1. Processor 2 handles j2, j5, and j8, and 

Processor 3 runs the remaining jobs. The total time to completion is 165, for an 
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average of .  

The algorithm to solve the multiprocessor case is to start jobs in order, cycling 

through processors. It is not hard to show that no other ordering can do better, 

although if the number of processors P evenly divides the number of jobs n, there 

are many optimal orderings. This is obtained by, for each 0  i <n/P, placing 

each of the jobs j

iP+1

 through j

(i+1)P

 on a different processor. In our case, 

Figure 10.6 shows a second optimal solution.  

Job  Time 

--------- 

 j
1     

3

 

 j
2     5

 

 j
3     6

 

 j
4    
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 j
5    

11

 

 j
6    

14

 

 j
7    15

 

 j
8    18

 

 j
9    

20

 

Figure 10.4 Jobs and times 

  

Figure 10.5 An optimal solution for the multiprocessor case 

Even if P does not divide n exactly, there can still be many optimal solutions, 

even if all the job times are distinct. We leave further investigation of this as 

an exercise.  
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Minimizing the Final Completion Time 

We close this section by considering a very similar problem. Suppose we are only 

concerned with when the last job finishes. In our two examples above, these 

completion times are 40 and 38, respectively. Figure 10.7 shows that the minimum 

final completion time is 34, and this clearly cannot be improved, because every 

processor is always busy.  

Although this schedule does not have minimum mean completion time, it has merit 

in that the completion time of the entire sequence is earlier. If the same user 

owns all these jobs, then this is the preferable method of scheduling. Although 

these problems are very similar, this new problem turns out to be NP-complete; it 

is just another way of phrasing the knapsack or bin-packing problems, which we 

will encounter later in this section. Thus, minimizing the final completion time 

is apparently much harder than minimizing the mean completion time.  

  

Figure 10.6 A second optimal solution for the multiprocessor case 

  

Figure 10.7 Minimizing the final completion time 

10.1.2. Huffman Codes 

In this section, we consider a second application of greedy algorithms, known as 

file compression.  

The normal ASCII  character set consists of roughly 100 "printable" characters. 

In order to distinguish these characters, log 100  = 7 bits are required. 
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Seven bits allow the representation of 128 characters, so the ASCII  character 
set adds some other "nonprintable" characters. An eighth bit is added as a parity 

check. The important point, however, is that if the size of the character set is 

C, then log C  bits are needed in a standard encoding.  

Suppose we have a file that contains only the characters a, e, i, s, t, plus 

blank spaces and newlines. Suppose further, that the file has ten a's, fifteen 

e's, twelve i's, three s's, four t's, thirteen blanks, and one newline. As the 

table in Figure 10.8 shows, this file requires 174 bits to represent, since there 

are 58 characters and each character requires three bits.  

Character  Code  Frequency  Total Bits 

-------------------------------------- 

   a        000     10          30 

   e        001     15          45 

   i        010     12          36 

   s        011      3           9 

   t        100      4          12 

 space      101      3          39 

newline     110      1           3 

-------------------------------------- 

 Total                         174 

Figure 10.8 Using a standard coding scheme 

In real life, files can be quite large. Many of the very large files are output 

of some program and there is usually a big disparity between the most frequent 

and least frequent characters. For instance, many large data files have an 

inordinately large amount of digits, blanks, and newlines, but few q's and x's. 

We might be interested in reducing the file size in the case where we are 

transmitting it over a slow phone line. Also, since on virtually every machine 

disk space is precious, one might wonder if it would be possible to provide a 

better code and reduce the total number of bits required.  

The answer is that this is possible, and a simple strategy achieves 25 percent 

savings on typical large files and as much as 50 to 60 percent savings on many 

large data files. The general strategy is to allow the code length to vary from 

character to character and to ensure that the frequently occurring characters 

have short codes. Notice that if all the characters occur with the same 

frequency, then there are not likely to be any savings.  

The binary code that represents the alphabet can be represented by the binary 

tree shown in Figure 10.9.  
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The tree in Figure 10.9 has data only at the leaves. The representation of each 

character can be found by starting at the root and recording the path, using a 0 

to indicate the left branch and a 1 to indicate the right branch. For instance, s 

is reached by going left, then right, and finally right. This is encoded as 011. 

This data structure is sometimes referred to as a trie. If character c

i

 is at 

depth d

i

 and occurs f

i

 times, then the cost of the code is equal to  d

i

 f

i

. 

 

  

Figure 10.9 Representation of the original code in a tree 

  

Figure 10.10 A slightly better tree 

A better code than the one given in Figure 10.9 can be obtained by noticing that 

the newline is an only child. By placing the newline symbol one level higher at 

its parent, we obtain the new tree in Figure 10.9. This new tree has cost of 173, 

but is still far from optimal.  

Notice that the tree in Figure 10.10 is a full tree: All nodes either are leaves 

or have two children. An optimal code will always have this property, since 

otherwise, as we have already seen, nodes with only one child could move up a 

level.  

If the characters are placed only at the leaves, any sequence of bits can always 

be decoded unambiguously. For instance, suppose the encoded string is 

0100111100010110001000111. 0 is not a character code, 01 is not a character code, 

but 010 represents i, so the first character is i. Then 011 follows, giving a t. 

Then 11 follows, which is a newline. The remainder of the code is a, space, t, i, 

e, and newline. Thus, it does not matter if the character codes are different 

lengths, as long as no character code is a prefix of another character code. Such 

an encoding is known as a prefix code. Conversely, if a character is contained in 

a nonleaf node, it is no longer possible to guarantee that the decoding will be 

unambiguous.  

Putting these facts together, we see that our basic problem is to find the full 
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binary tree of minimum total cost (as defined above), where all characters are 

contained in the leaves. The tree in Figure 10.11 shows the optimal tree for our 

sample alphabet. As can be seen in Figure 10.12, this code uses only 146 bits.  

  

Figure 10.11 Optimal prefix code 

Character   Code  Frequency  Total Bits 

------------------------=-------------- 

   a         001     10          30 

   e          01     15          30 

   i          10     12          24 

   s       00000      3          15 

   t        0001      4          16 

 space        11     13          26 

newline    00001      1           5 

--------------------------------------- 

 Total                          146 

Figure 10.12 Optimal prefix code 

Notice that there are many optimal codes. These can be obtained by swapping 

children in the encoding tree. The main unresolved question, then, is how the 

coding tree is constructed. The algorithm to do this was given by Huffman in 

1952. Thus, this coding system is commonly referred to as a Huffman code.  

Huffman's Algorithm  

Huffman's Algorithm 

Throughout this section we will assume that the number of characters is C. 

Huffman's algorithm can be described as follows: We maintain a forest of trees. 
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The weight of a tree is equal to the sum of the frequencies of its leaves. C - 1 

times, select the two trees, T

1

 and T

2

, of smallest weight, breaking ties 

arbitrarily, and form a new tree with subtrees T

l

 and T

2

. At the beginning of the 

algorithm, there are C single-node trees-one for each character. At the end of 

the algorithm there is one tree, and this is the optimal Huffman coding tree.  

A worked example will make the operation of the algorithm clear. Figure 10.13 

shows the initial forest; the weight of each tree is shown in small type at the 

root. The two trees of lowest weight are merged together, creating the forest 

shown in Figure 10.14. We will name the new root T1, so that future merges can be 

stated unambiguously. We have made s the left child arbitrarily; any tiebreaking 

procedure can be used. The total weight of the new tree is just the sum of the 

weights of the old trees, and can thus be easily computed. It is also a simple 

matter to create the new tree, since we merely need to get a new node, set the 

left and right pointers, and record the weight.  

  

Figure 10.13 Initial stage of Huffman's algorithm 

  

Figure 10.14 Huffman's algorithm after the first merge 

  

Figure 10.15 Huffman's algorithm after the second merge 

  

Figure 10.16 Huffman's algorithm after the third merge 

Now there are six trees, and we again select the two trees of smallest weight. 
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These happen to be T1 and t, which are then merged into a new tree with root T2 

and weight 8. This is shown in Figure 10.15. The third step merges T2 and a, 

creating T3, with weight 10 + 8 = 18. Figure 10.16 shows the result of this 

operation.  

After the third merge is completed, the two trees of lowest weight are the 

single-node trees representing i and the blank space. Figure 10.17 shows how 

these trees are merged into the new tree with root T4. The fifth step is to merge 

the trees with roots e and T3, since these trees have the two smallest weights. 

The result of this step is shown in Figure 10.18.  

Finally, the optimal tree, which was shown in Figure 10.11, is obtained by 

merging the two remaining trees. Figure 10.19 shows this optimal tree, with root 

T6.  

  

Figure 10.17 Huffman's algorithm after the fourth merge 

  

Figure 10.18 Huffman's algorithm after the fifth merge 
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Figure 10.19 Huffman's algorithm after the final merge 

We will sketch the ideas involved in proving that Huffman's algorithm yields an 

optimal code; we will leave the details as an exercise. First, it is not hard to 

show by contradiction that the tree must be full, since we have already seen how 

a tree that is not full is improved.  

Next, we must show that the two least frequent characters  and  must be 

the two deepest nodes (although other nodes may be as deep). Again, this is easy 

to show by contradiction, since if either  or is not a deepest node, then 

there must be some  that is (recall that the tree is full). If  is less 

frequent than , then we can improve the cost by swapping them in the tree.  

We can then argue that the characters in any two nodes at the same depth can be 

swapped without affecting optimality. This shows that an optimal tree can always 

be found that contains the two least frequent symbols as siblings; thus the first 

step is not a mistake.  

The proof can be completed by using an induction argument. As trees are merged, 

we consider the new character set to be the characters in the roots. Thus, in our 

example, after four merges, we can view the character set as consisting of e and 

the metacharacters T3 and T4. This is probably the trickiest part of the proof; 

you are urged to fill in all of the details.  

The reason that this is a greedy algorithm is that at each stage we perform a 

merge without regard to global considerations. We merely select the two smallest 

trees.  

If we maintain the trees in a priority queue, ordered by weight, then the running 

time is O(C log C), since there will be one build_heap, 2C - 2 delete_mins, and C

- 2 inserts, on a priority queue that never has more than C elements. A simple 

implementation of the priority queue, using a linked list, would give an O (C

2

) 

algorithm. The choice of priority queue implementation depends on how large C is. 

In the typical case of an ASCII  character set, C is small enough that the 
quadratic running time is acceptable. In such an application, virtually all the 

running time will be spent on the disk I/O required to read the input file and 

write out the compressed version.  

There are two details that must be considered. First, the encoding information 

must be transmitted at the start of the compressed file, since otherwise it will 

be impossible to decode. There are several ways of doing this; see Exercise 10.4. 

For small files, the cost of transmitting this table will override any possible 

savings in compression, and the result will probably be file expansion. Of 

course, this can be detected and the original left intact. For large files, the 

size of the table is not significant.  

The second problem is that as described, this is a two-pass algorithm. The first 

pass collects the frequency data and the second pass does the encoding. This is 

obviously not a desirable property for a program dealing with large files. Some 
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alternatives are described in the references.  

10.1.3. Approximate Bin Packing 

In this section, we will consider some algorithms to solve the bin packing 

problem. These algorithms will run quickly but will not necessarily produce 

optimal solutions. We will prove, however, that the solutions that are produced 

are not too far from optimal.  

We are given n items of sizes s

1

, s

2

, . . . , s

n

. All sizes satisfy 0 < s

i

 1. 

The problem is to pack these items in the fewest number of bins, given that each 

bin has unit capacity. As an example, Figure 10.20 shows an optimal packing for 

an item list with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.  

  

Figure 10.20 Optimal packing for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

There are two versions of the bin packing problem. The first version is on-line 

bin packing. In this version, each item must be placed in a bin before the next 

item can be processed. The second version is the off-line bin packing problem. In 

an off-line algorithm, we do not need to do anything until all the input has been 

read. The distinction between on-line and off-line algorithms was discussed in 

Section 8.2.  

On-line Algorithms 

The first issue to consider is whether or not an on-line algorithm can actually 

always give an optimal answer, even if it is allowed unlimited computation. 

Remember that even though unlimited computation is allowed, an on-line algorithm 

must place an item before processing the next item and cannot change its 

decision.  

To show that an on-line algorithm cannot always give an optimal solution, we will 

give it particularly difficult data to work on. Consider an input sequence I

1

 of 

m small items of weight  followed by m large items of weight , 0 <  

< 0.01. It is clear that these items can be packed in m bins if we place one 

small item and one large item in each bin. Suppose there were an optimal on-line 

algorithm A that could perform this packing. Consider the operation of algorithm 

A on the sequence I

2

, consisting of only m small items of weight . I

2

can be 
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packed in [m/2] bins. However, A will place each item in a separate bin, since A 

must yield the same results on I

2

 as it does for the first half of I

1

, since the 

first half of I

1

 is exactly the same input as I

2

. This means that A will use 

twice as many bins as is optimal for I

2

. What we have proven is that there is no 

optimal algorithm for on-line bin packing.  

What the argument above shows is that an on-line algorithm never knows when the 

input might end, so any performance guarantees it provides must hold at every 

instant throughout the algorithm. If we follow the foregoing strategy, we can 

prove the following.  

THEOREM 10.1.  

There are inputs that force any on-line bin-packing algorithm to use at least 

the optimal number of bins.  

PROOF:  

Suppose otherwise, and suppose for simplicity that m is even. Consider any on-

line algorithm A running on the input sequence I

1

, above. Recall that this 

sequence consists of m small items followed by m large items. Let us consider 

what the algorithm A has done after processing the mth item. Suppose A has 

already used b bins. At this point in the algorithm, the optimal number of bins 

is m/2, because we can place two elements in each bin. Thus we know that 

, by our assumption of a  performance guarantee.  

Now consider the performance of algorithm A after all items have been packed. All 

bins created after the bth bin must contain exactly one item, since all small 

items are placed in the first b bins, and two large items will not fit in a bin. 

Since the first b bins can have at most two items each, and the remaining bins 

have one item each, we see that packing 2m items will require at least 2m - b 

bins. Since the 2m items can be optimally packed using m bins, our performance 

guarantee assures us that .  

  

Figure 10.21 Next fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

The first inequality implies that , and the second inequality implies 
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that , which is a contradiction. Thus, no on-line algorithm can 

guarantee that it will produce a packing with less than the optimal number of 

bins.  

There are three simple algorithms that guarantee that the number of bins used is 

no more than twice optimal. There are also quite a few more complicated 

algorithms with better guarantees.  

Next Fit 

Probably the simplest algorithm is next fit. When processing any item, we check 

to see whether it fits in the same bin as the last item. If it does, it is placed 

there; otherwise, a new bin is created. This algorithm is incredibly simple to 

implement and runs in linear time. Figure 10.21 shows the packing produced for 

the same input as Figure 10.20.  

Not only is next fit simple to program, its worst-case behavior is also easy to 

analyze.  

THEOREM 10.2.  

Let m be the optimal number of bins required to pack a list I of items. Then next 

fit never uses more than 2m bins. There exist sequences such that next fit uses 

2m - 2 bins.  

PROOF:  

Consider any adjacent bins B

j

 and B

j + 1.

 The sum of the sizes of all items in B

j

 

and B

j + 1

 must be larger than 1, since otherwise all of these items would have 

been placed in B

j.

 If we apply this result to all pairs of adjacent bins, we see 

that at most half of the space is wasted. Thus next fit uses at most twice the 

number of bins.  

To see that this bound is tight, suppose that the n items have size s

i

 = 0.5 if i

is odd and s

i

 = 2/n if i is even. Assume n is divisible by 4. The optimal 

packing, shown in Figure 10.22, consists of n/4 bins, each containing 2 elements 

of size 0.5, and one bin containing the n/2 elements of size 2/n, for a total of 

(n/4) + 1. Figure 10.23 shows that next fit uses n/2 bins. Thus, next fit can be 

forced to use almost twice as many bins as optimal.  
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Figure 10.22 Optimal packing for 0.5, 2/n, 0.5, 2/n, 0.5, 2/n, . . . 

  

Figure 10.23 Next fit packing for 0.5, 2/n, 0.5, 2/n, 0.5, 2/n, . . . 

First Fit 

Although next fit has a reasonable performance guarantee, it performs poorly in 

practice, because it creates new bins when it does not need to. In the sample 

run, it could have placed the item of size 0.3 in either B

1

 or B

2

, rather than 

create a new bin.  

The first fit strategy is to scan the bins in order and place the new item in the 

first bin that is large enough to hold it. Thus, a new bin is created only when 

the results of previous placements have left no other alternative. Figure 10.24 

shows the packing that results from first fit on our standard input.  

A simple method of implementing first fit would process each item by scanning 

down the list of bins sequentially. This would take O(n

2

). It is possible to 

implement first fit to run in O(n log n); we leave this as an exercise.  

A moment's thought will convince you that at any point, at most one bin can be 

more than half empty, since if a second bin were also half empty, its contents 

would fit into the first bin. Thus, we can immediately conclude that first fit 

guarantees a solution with at most twice the optimal number of bins.  
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Figure 10.24 First fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

On the other hand, the bad case that we used in the proof of next fit's 

performance bound does not apply for first fit. Thus, one might wonder if a 

better bound can be proven. The answer is yes, but the proof is complicated.  

THEOREM 10.3.  

Let m be the optimal number of bins required to pack a list I of items. Then 

first fit never uses more than bins. There exist sequences such that first 

fit uses  bins.  

PROOF:  

See the references at the end of the chapter.  

An example where first fit does almost as poorly as the previous theorem would 

indicate is shown in Figure 10.25. The input consists of 6m items of size , 

followed by 6m items of size  , followed by 6m items of size . One 

simple packing places one item of each size in a bin and requires 6m bins. First 

fit requires 10m bins.  

When first fit is run on a large number of items with sizes uniformly distributed 

between 0 and 1, empirical results show that first fit uses roughly 2 percent 

more bins than optimal. In many cases, this is quite acceptable.  
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Figure 10.25 A case where first fit uses 10m bins instead of 6m 

  

Figure 10.26 Best fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

First Fit 

Although next fit has a reasonable performance guarantee, it performs poorly in 

practice, because it creates new bins when it does not need to. In the sample 

run, it could have placed the item of size 0.3 in either B

1

 or B

2

, rather than 

create a new bin.  

The first fit strategy is to scan the bins in order and place the new item in the 

first bin that is large enough to hold it. Thus, a new bin is created only when 

the results of previous placements have left no other alternative. Figure 10.24 

shows the packing that results from first fit on our standard input.  

A simple method of implementing first fit would process each item by scanning 

down the list of bins sequentially. This would take O(n

2

). It is possible to 

implement first fit to run in O(n log n); we leave this as an exercise.  

A moment's thought will convince you that at any point, at most one bin can be 

more than half empty, since if a second bin were also half empty, its contents 

would fit into the first bin. Thus, we can immediately conclude that first fit 

guarantees a solution with at most twice the optimal number of bins.  

  

Figure 10.24 First fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

On the other hand, the bad case that we used in the proof of next fit's 

performance bound does not apply for first fit. Thus, one might wonder if a 
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better bound can be proven. The answer is yes, but the proof is complicated.  

THEOREM 10.3.  

Let m be the optimal number of bins required to pack a list I of items. Then 

first fit never uses more than bins. There exist sequences such that first 

fit uses  bins.  

PROOF:  

See the references at the end of the chapter.  

An example where first fit does almost as poorly as the previous theorem would 

indicate is shown in Figure 10.25. The input consists of 6m items of size , 

followed by 6m items of size  , followed by 6m items of size . One 

simple packing places one item of each size in a bin and requires 6m bins. First 

fit requires 10m bins.  

When first fit is run on a large number of items with sizes uniformly distributed 

between 0 and 1, empirical results show that first fit uses roughly 2 percent 

more bins than optimal. In many cases, this is quite acceptable.  

  

Figure 10.25 A case where first fit uses 10m bins instead of 6m 

  

Figure 10.26 Best fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 
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10.2. Divide and Conquer 

Another common technique used to design algorithms is divide and conquer. Divide 

and conquer algorithms consist of two parts:  

Divide: Smaller problems are solved recursively (except, of course, base cases). 

Conquer: The solution to the original problem is then formed from the solutions 

to the subproblems.  

Traditionally, routines in which the text contains at least two recursive calls 

are called divide and conquer algorithms, while routines whose text contains only 

one recursive call are not. We generally insist that the subproblems be disjoint 

(that is, essentially nonoverlapping). Let us review some of the recursive 

algorithms that have been covered in this text.  

We have already seen several divide and conquer algorithms. In Section 2.4.3, we 

saw an O (n log n) solution to the maximum subsequence sum problem. In Chapter 4, 

we saw linear-time tree traversal strategies. In Chapter 7, we saw the classic 

examples of divide and conquer, namely mergesort and quicksort, which have O (n 

log n) worst-case and average-case bounds, respectively.  

We have also seen several examples of recursive algorithms that probably do not 

classify as divide and conquer, but merely reduce to a single simpler case. In 

Section 1.3, we saw a simple routine to print a number. In Chapter 2, we used 

recursion to perform efficient exponentiation. In Chapter 4, we examined simple 

search routines for binary search trees. In Section 6.6, we saw simple recursion 

used to merge leftist heaps. In Section 7.7, an algorithm was given for selection 

that takes linear average time. The disjoint set find operation was written 

recursively in Chapter 8. Chapter 9 showed routines to recover the shortest path 

in Dijkstra's algorithm and other procedures to perform depth-first search in 

graphs. None of these algorithms are really divide and conquer algorithms, 

because only one recursive call is performed.  

We have also seen, in Section 2.4, a very bad recursive routine to compute the 

Fibonacci numbers. This could be called a divide and conquer algorithm, but it is 

terribly inefficient, because the problem really is not divided at all.  

In this section, we will see more examples of the divide and conquer paradigm. 

Our first application is a problem in computational geometry. Given n points in a 

plane, we will show that the closest pair of points can be found in O(n log n) 

time. The exercises describe some other problems in computational geometry which 

can be solved by divide and conquer. The remainder of the section shows some 

extremely interesting, but mostly theoretical, results. We provide an algorithm 

which solves the selection problem in O(n) worst-case time. We also show that 2 

n-bit numbers can be multiplied in o(n

2

) operations and that two n x n matrices 

can be multiplied in o(n

3

) operations. Unfortunately, even though these 

algorithms have better worst-case bounds than the conventional algorithms, none 

are practical except for very large inputs.  

10.2.1. Running Time of Divide and Conquer Algorithms  
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10.2.1. Running Time of Divide and Conquer Algorithms 

All the efficient divide and conquer algorithms we will see divide the problems 

into subproblems, each of which is some fraction of the original problem, and 

then perform some additional work to compute the final answer. As an example, we 

have seen that mergesort operates on two problems, each of which is half the size 

of the original, and then uses O(n) additional work. This yields the running time 

equation (with appropriate initial conditions)  

T(n) = 2T(n/2) + O(n) 

We saw in Chapter 7 that the solution to this equation is O(n log n). The 

following theorem can be used to determine the running time of most divide and 

conquer algorithms.  

THEOREM 10.6.  

The solution to the equation T(n) = aT(n/b) + (n

k

), where a  1 and b > 1, 

is  

  

PROOF:  

Following the analysis of mergesort in Chapter 7, we will assume that n is a 

power of b; thus, let n = b

m

. Then n/b = b

m-l

 and n

k

 = (b

m

)

k

 = b

mk

 = b

km

 = (b

k

)

m

. 

Let us assume T(1) = 1, and ignore the constant factor in (n

k

). Then we have 

T(b
m

) = aT(b
m-l

)+(b
k

)
m

 

If we divide through by a

m

, we obtain the equation 

 

 

 

(10.3)

 

We can apply this equation for other values of m, obtaining 

 

 

 

(10.4)
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(10.5)

 

 

 

(10.6)

 

We use our standard trick of adding up the telescoping equations (10.3) through (10.6). Virtually 

all the terms on the left cancel the leading terms on the right, yielding  

 

 

(10.7)

 

 

 

(10.8)

 

Thus 

 

 

 

(10.9)

 

If a > b

k

, then the sum is a geometric series with ratio smaller than 1. Since the sum of 

infinite series would converge to a constant, this finite sum is also bounded by a constant, and 

thus Equation (10.10) applies:  

T(n) = O(a

m

) = O(a

logb

 

n

) O = O(n

logb a

) 

 

(10.10)

 

If a = b

k

, then each term in the sum is 1. Since the sum contains 1 + log

b 

n terms and a = b

k

 

implies that log

b

 a = k,  

T(n) = O(a

m 

log

b 

n) = O(n

log

b

a

 

log

b 

n) = O(n

k 

log

b 

n) 

 

= O (n

k 

log n) 
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(10.11) 

Finally, if a < b

k

, then the terms in the geometric series are larger than 1, and the second 

formula in Section 1.2.3 applies. We obtain  

 

 

(10.12)

 

proving the last case of the theorem. 

 

As an example, mergesort has a = b = 2 and k = 1. The second case applies, giving the answer O(n 

log n). If we solve three problems, each of which is half the original size, and combine the 

solutions with O(n) additional work, then a = 3, b = 2 and k = 1. Case 1 applies here, giving a 

bound of O(n

log

2

3

) = O(n

1.59

). An algorithm that solved three half-sized problems, but required O

(n

2

) work to merge the solution, would have an O(n

2

) running time, since the third case would 

apply.  

There are two important cases that are not covered by Theorem 10.6. We state two more theorems, 

leaving the proofs as exercises. Theorem 10.7 generalizes the previous theorem.  

THEOREM 10.7. 

 

The solution to the equation T(n) = aT(n/b) + (n

k 

log

p 

n), where a  1, b > 1, and p 

0 is  

 

 

THEOREM 10.8. 

 

, then the solution to the equation  is T(n) = O(n). 

 

10.2.2. Closest-Points Problem

 

The input to our first problem is a list P of points in a plane. If p

l

 = (x

1

, y

1

) and p

2

 = (x

2

, 

y

2

), then the Euclidean distance between pl and p2 is [(x
1

 - x

2

)

2

 + (y

l

 - y

2

)

2

]

l/2

. We are 

required to find the closest pair of points. It is possible that two points have the same 

position; in that case that pair is the closest, with distance zero.  

If there are n points, then there are n (n - 1)/2 pairs of distances. We can check all of these, 

obtaining a very short program, but at the expense of an O(n

2

) algorithm. Since this approach is 

just an exhaustive search, we should expect to do better.  

Let us assume that the points have been sorted by x coordinate. At worst, this adds O(n log n) to 

the final time bound. Since we will show an O(n log n) bound for the entire algorithm, this sort 

is essentially free, from a complexity standpoint.  
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Figure 10.29 shows a small sample point set P. Since the points are sorted by x coordinate, we 

can draw an imaginary vertical line that partitions the points set into two halves, P

l

 and P

r

. 

This is certainly simple to do. Now we have almost exactly the same situation as we saw in the 

maximum subsequence sum problem in Section 2.4.3. Either the closest points are both in P

l

, or 

they are both in P

r

, or one is in P

l

 and the other is in P

r

. Let us call these distances d

l

, d

r

, 

and d

c

. Figure 10.30 shows the partition of the point set and these three distances.  

We can compute d

l

 and dr recursively. The problem, then, is to compute dc. Since we would like 

an O(n log n) solution, we must be able to compute d

c

 with only O(n) additional work. We have 

already seen that if a procedure consists of two half-sized recursive calls and O(n) additional 

work, then the total time will be O(n log n).  

Let  = min(d

l

, d

r

). The first observation is that we only need to compute d

c

 if d

c

 improves 

on . If d

c

 is such a distance, then the two points that define d

c

 must be within of the 

dividing line; we will refer to this area as a strip. As shown in Figure 10.31, this observation 

limits the number of points that need to be considered (in our case,  = d

r

). 

 

There are two strategies that can be tried to compute d

c

. For large point sets that are uniformly 

distributed, the number of points that are expected to be in the strip is very small. Indeed, it 

is easy to argue that only  points are in the strip on average. Thus, we could perform a 

brute force calculation on these points in O(n) time. The pseudocode in Figure 10.32 implements 

this strategy, assuming the C convention that the points are indexed starting at 0.  

 

 

Figure 10.29 A small point set
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Figure 10.30 P partitioned into P

1

 and P2; shortest distances are shown

 

 

 

Figure 10.31 Two-lane strip, containing all points considered for d

c

 strip

 

/* Points are all in the strip */

 

for( i=0; i<NUM_POINTS_IN_STRIP; i++ )

 

for( j=i+1; j<NUM_POINTS_IN_STRIP; j++ )

 

if( dist( p

i

,p

j 

) < )

 

 = dist( p

i

,p

j

 );

 

Figure 10.32 Brute force calculation of min( , d

c

)

 

/* Points are all in the strip and sorted by y coordinate */

 

for( i=0; i<NUM_POINTS_IN_STRIP; i++ )
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for( j=i+1; j<NUM_POINTS_IN_STRIP; j++ ) 

if ( pi and pj 's coordinates differ by more than  )

 

break;     /* goto next pi */

 

else

 

if( dist( p

i

, p

j

) < )

 

 = dist( p

i

, p

j

);

 

Figure 10.33 Refined calculation of min( , d

c

)

 

In the worst case, all the points could be in the strip, so this strategy does not always work in 

linear time. We can improve this algorithm with the following observation: The y coordinates of 

the two points that define d

c

 can differ by at most . Otherwise, d

c 

> . Suppose that the 

points in the strip are sorted by their y coordinates. Therefore, if p

i

 and p

j

's y coordinates 

differ by more than , then we can proceed to p

i + l

. This simple modification is implemented 

in Figure 10.33.  

This extra test has a significant effect on the running time, because for each p

i

 only a few 

points p

j

 are examined before p

i

's and p

j

's y coordinates differ by more than  and force an 

exit from the inner for loop. Figure 10.34 shows, for instance, that for point p

3

, only the two 

points p

4

 and p

5

 lie in the strip within  vertical distance. 

 

 

 

Figure 10.34 Only p

4

 and p5 are considered in the second for loop
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Figure 10.35 At most eight points fit in the rectangle; there are two coordinates shared by two 

points each 

In the worst case, for any point p

i

, at most 7 points p

j

 are considered. This is because these 

points must lie either in the  by  square in the left half of the strip or in the  

by  square in the right half of the strip. On the other hand, all the points in each by 

 square are separated by at least . In the worst case, each square contains four points, 

one at each corner. One of these points is p

i

, leaving at most seven points to be considered. 

This worst-case situation is shown in Figure 10.35. Notice that even though p

l2

 and p

r1

 have the 

same coordinates, they could be different points. For the actual analysis, it is only important 

that the number of points in the  by 2  rectangle be O(1), and this much is certainly 

clear.  

Because at most seven points are considered for each p

i

, the time to compute a d

c

 that is better 

than  is O(n). Thus, we appear to have an O(n log n) solution to the closest-points problem, 

based on the two half-sized recursive calls plus the linear extra work to combine the two 

results. However, we do not quite have an O (n log n) solution yet.  

The problem is that we have assumed that a list of points sorted by y coordinate is available. If 

we perform this sort for each recursive call, then we have O(n log n) extra work: this gives an O

(n log

2

 n) algorithm. This is not all that bad, especially when compared to the brute force O

(n

2

). However, it is not hard to reduce the work for each recursive call to O(n), thus ensuring 

an O(n log n) algorithm.  

We will maintain two lists. One is the point list sorted by x coordinate, and the other is the 

point list sorted by y coordinate. We will call these lists P and Q, respectively. These can be 

obtained by a preprocessing sorting step at cost O(n log n) and thus does not affect the time 

bound. P

l

 and Q

l

 are the lists passed to the left-half recursive call, and P

r

 and Q

r

 are the 

lists passed to the right-half recursive call. We have already seen that P is easily split in the 

middle. Once the dividing line is known, we step through Q sequentially, placing each element in 

Q

l

 or Q

r

, as appropriate. It is easy to see that Q

l

 and Q

r

 will be automatically sorted by y 

coordinate. When the recursive calls return, we scan through the Q list and discard all the 

points whose x coordinates are not within the strip. Then Q contains only points in the strip, 

and these points are guaranteed to be sorted by their y coordinates.  
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This strategy ensures that the entire algorithm is O (n log n), because only O (n) extra work is 

performed.  

10.2.3. The Selection Problem

 

The selection problem requires us to find the kth smallest element in a list S of n elements. Of 

particular interest is the special case of finding the median. This occurs when k = n/2 . 

In Chapters 1, 6, 7 we have seen several solutions to the selection problem. The solution in 

Chapter 7 uses a variation of quicksort and runs in O(n) average time. Indeed, it is described in 

Hoare's original paper on quicksort.  

Although this algorithm runs in linear average time, it has a worst case of O (n

2

). Selection can 

easily be solved in O(n log n) worst-case time by sorting the elements, but for a long time it 

was unknown whether or not selection could be accomplished in O(n) worst-case time. The 

quickselect algorithm outlined in Section 7.7.6 is quite efficient in practice, so this was 

mostly a question of theoretical interest.  

Recall that the basic algorithm is a simple recursive strategy. Assuming that n is larger than 

the cutoff point where elements are simply sorted, an element v, known as the pivot, is chosen. 

The remaining elements are placed into two sets, S

1

 and S

2

. S

1

 contains elements that are 

guaranteed to be no larger than v, and S

2

 contains elements that are no smaller than v. Finally, 

if k  |S

1

|, then the kth smallest element in S can be found by recursively computing the kth 

smallest element in S

1

. If k = |S

1

| + 1, then the pivot is the kth smallest element. Otherwise, 

the kth smallest element in S is the (k - |S

1

| -1 )st smallest element in S

2

. The main difference 

between this algorithm and quicksort is that there is only one subproblem to solve instead of 

two.  

In order to obtain a linear algorithm, we must ensure that the subproblem is only a fraction of 

the original and not merely only a few elements smaller than the original. Of course, we can 

always find such an element if we are willing to spend some time to do so. The difficult problem 

is that we cannot spend too much time finding the pivot.  

For quicksort, we saw that a good choice for pivot was to pick three elements and use their 

median. This gives some expectation that the pivot is not too bad, but does not provide a 

guarantee. We could choose 21 elements at random, sort them in constant time, use the 11th 

largest as pivot, and get a pivot that is even more likely to be good. However, if these 21 

elements were the 21 largest, then the pivot would still be poor. Extending this, we could use up 

to O (n / log n) elements, sort them using heapsort in O(n) total time, and be almost certain, 

from a statistical point of view, of obtaining a good pivot. In the worst case, however, this 

does not work because we might select the O (n / log n) largest elements, and then the pivot 

would be the [n - O(n / log n)]th largest element, which is not a constant fraction of n.  

The basic idea is still useful. Indeed, we will see that we can use it to improve the expected 

number of comparisons that quickselect makes. To get a good worst case, however, the key idea is 

to use one more level of indirection. Instead of finding the median from a sample of random 

elements, we will find the median from a sample of medians.  

The basic pivot selection algorithm is as follows: 

 

1. Arrange the n elements into n/5  groups of 5 elements, ignoring the (at most four) 

extra elements.  
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2. Find the median of each group. This gives a list M of n/5  medians. 

 

3. Find the median of M. Return this as the pivot, v. 

 

We will use the term median-of-median-of-five partitioning to describe the quickselect algorithm 

that uses the pivot selection rule given above. We will now show that median-of-median-of-five 

partitioning guarantees that each recursive subproblem is at most roughly 70 percent as large as 

the original. We will also show that the pivot can be computed quickly enough to guarantee an O 

(n) running time for the entire selection algorithm.  

Let us assume for the moment that n is divisible by 5, so there are no extra elements. Suppose 

also that n/5 is odd, so that the set M contains an odd number of elements. This provides some 

symmetry, as we shall see. We are thus assuming, for convenience, that n is of the form 10k + 5. 

We will also assume that all the elements are distinct. The actual algorithm must make sure to 

handle the case where this is not true. Figure 10.36 shows how the pivot might be chosen when n = 

45.  

In Figure 10.36, v represents the element which is selected by the algorithm as pivot. Since v is 

the median of nine elements, and we are assuming that all elements are distinct, there must be 

four medians that are larger than v and four that are smaller. We denote these by L and S, 

respectively. Consider a group of five elements with a large median (type L). The median of the 

group is smaller than two elements in the group and larger than two elements in the group. We 

will let H represent the huge elements. These are elements that are known to be larger than a 

large median. Similarly, T represents the tiny elements, which are smaller than a small median. 

There are 10 elements of type H: Two are in each of the groups with an L type median, and two 

elements are in the same group as v. Similarly, there are 10 elements of type T.  

 

 

Figure 10.36 How the pivot is chosen

 

Elements of type L or H are guaranteed to be larger than v, and elements of type S or T are 

guaranteed to be smaller than v. There are thus guaranteed to be 14 large and 14 small elements 

in our problem. Therefore, a recursive call could be on at most 45 - 14 - 1 = 30 elements.  

Let us extend this analysis to general n of the form 10k + 5. In this case, there are k elements 

of type L and k elements of type S . There are 2k + 2 elements of type H, and also 2k + 2 

elements of type T. Thus, there are 3k + 2 elements that are guaranteed to be larger than v and 

3k + 2 elements that are guaranteed to be smaller. Thus, in this case, the recursive call can 

contain at most 7k + 2 < 0.7n elements. If n is not of the form 10k + 5, similar arguments can be 
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made without affecting the basic result.  

It remains to bound the running time to obtain the pivot element. There are two basic steps. We 

can find the median of five elements in constant time. For instance, it is not hard to sort five 

elements in eight comparisons. We must do this n/5  times, so this step takes O(n) time. 

We must then compute the median of a group of n/5  elements. The obvious way to do this 

is to sort the group and return the element in the middle. But this takes O( n/5  log 

n/5 ) = O(n log n) time, so this does not work. The solution is to call the selection 

algorithm recursively on the n/5 elements. 

 

This completes the description of the basic algorithm. There are still some details that need to 

be filled in if an actual implementation is desired. For instance, duplicates must be handled 

correctly, and the algorithm needs a cutoff large enough to ensure that the recursive calls make 

progress. There is quite a large amount of overhead involved, and this algorithm is not practical 

at all, so we will not describe any more of the details that need to be considered. Even so, from 

a theoretical standpoint, the algorithm is a major breakthrough, because, as the following 

theorem shows, the running time is linear in the worst case.  

THEOREM 10.9. 

 

The running time of quickselect using median-of-median-of-five partitioning is O(n). 

 

PROOF: 

 

The algorithm consists of two recursive calls of size 0.7n and 0.2n, plus linear extra work. By 

Theorem 10.8, the running time is linear.  

Reducing the Average Number of Comparisons 

 

Reducing the Average Number of Comparisons

 

Divide and conquer can also be used to reduce the expected number of comparisons required by the 

selection algorithm. Let us look at a concrete example. Suppose we have a group S of 1,000 

numbers and are looking for the 100th smallest number, which we will call x. We choose a subset 

S' of S consisting of 100 numbers. We would expect that the value of x is similar in size to the 

10th smallest number in S'. More specifically, the fifth smallest number in S' is almost 

certainly less than x, and the 15th smallest number in S' is almost certainly greater than x.  

More generally, a sample S' of s elements is chosen from the n elements. Let  be some number, 

which we will choose later so as to minimize the average number of comparisons used by the 

procedure. We find the (v

1

 = ks/n - )th and (v2 = ks/n + )th smallest elements in S'. 

Almost certainly, the kth smallest element in S will fall between v

1

 and v

2

, so we are left with 

a selection problem on 2  elements. With low probability, the kth smallest element does not 

fall in this range, and we have considerable work to do. However, with a good choice of s and 

, we can ensure, by the laws of probability, that the second case does not adversely affect 

the total work.  
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If an analysis is performed, we find that if s = n

2/3 

log

1/3 

n and  = n

1/3 

log

2/3 

n, then the 

expected number of comparisons is n + k + O(n

2/3 

log

1/3 

n), which is optimal except for the low-

order term. (If k > n/2, we can consider the symmetric problem of finding the (n - k)th largest 

element.)  

Most of the analysis is easy to do. The last term represents the cost of performing the two 

selections to determine v

1

 and v

2

. The average cost of the partitioning, assuming a reasonably 

clever strategy, is equal to n plus the expected rank of v

2 

in S, which is n + k + O(n /s). If 

the kth element winds up in S', the cost of finishing the algorithm is equal to the cost of 

selection on S', namely O(s). If the kth smallest element doesn't wind up in S', the cost is O

(n). However, s and  have been chosen to guarantee that this happens with very low 

probability o(1/n), so the expected cost of this possibility is o(1), which is a term that goes 

to zero as n gets large. An exact calculation is left as Exercise 10.21.  

This analysis shows that finding the median requires about 1.5n comparisons on average. Of 

course, this algorithm requires some floating-point arithmetic to compute s, which can slow down 

the algorithm on some machines. Even so, experiments have shown that if correctly implemented, 

this algorithm compares favorably with the quickselect implementation in Chapter 7.  

10.2.4. Theoretical Improvements for Arithmetic Problems

 

In this section we describe a divide and conquer algorithm that multiplies two n-digit numbers. 

Our previous model of computation assumed that multiplication was done in constant time, because 

the numbers were small. For large numbers, this assumption is no longer valid. If we measure 

multiplication in terms of the size of numbers being multiplied, then the natural multiplication 

algorithm takes quadratic time. The divide and conquer algorithm runs in subquadratic time. We 

also present the classic divide and conquer algorithm that multiplies two n by n matrices in 

subcubic time.  

Multiplying Integers 

 

Matrix Multiplication 

 

Multiplying Integers

 

Suppose we want to multiply two n-digit numbers x and y. If exactly one of x and y is negative, 

then the answer is negative; otherwise it is positive. Thus, we can perform this check and then 

assume that x, y  0. The algorithm that almost everyone uses when multiplying by hand 

requires (n

2

) operations, because each digit in x is multiplied by each digit in y. 

 

If x = 61,438,521 and y = 94,736,407, xy = 5,820,464,730,934,047. Let us break x and y into two 

halves, consisting of the most significant and least significant digits, respectively. Then x

l

 = 

6,143, x

r

 = 8,521, y

l

 = 9,473, and y

r

 = 6,407. We also have x = x

l

10

4

 + x

r

 and y = y

l

10

4

 + y

r

. It 

follows that  

xy = x

l

y

l

10

8

 + (x

l

y

r

 + x

r

y

l

)10

4

 + x

r

y

r

 

Notice that this equation consists of four multiplications, x

l

y

l

, x

l

y

r

, x

r

y

l

, and x

r

y

r

, which are 

each half the size of the original problem (n/2 digits). The multiplications by 10

8

 and 10

4

 

amount to the placing of zeros. This and the subsequent additions add only O(n) additional work. 
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If we perform these four multiplications recursively using this algorithm, stopping at an 

appropriate base case, then we obtain the recurrence  

T(n) = 4T(n/2) + O(n)

 

From 

Theorem 10.6, we see that T(n) = O(n

2

), so, unfortunately, we have not improved the 

algorithm. To achieve a subquadratic algorithm, we must use less than four recursive calls. The 

key observation is that  

x

l

y

r

 + x

r

y

l

 = (x

l

 - x

r

)(y

r

 - y

l

) + x

l

y

l

 + x

r

y

r

 

Thus, instead of using two multiplications to compute the coefficient of 10

4

, we can use one 

multiplication, plus the result of two multiplications that have already been performed. Figure 

10.37 shows how only three recursive subproblems need to be solved.  

It is easy to see that now the recurrence equation satisfies 

 

T(n) = 3T(n/2) + O(n),

 

and so we obtain T(n) = O(n

log23

) = O(n

1.59

). To complete the algorithm, we must have a base 

case, which can be solved without recursion.  

 

 

Figure 10.37 The divide and conquer algorithm in action

 

When both numbers are one-digit, we can do the multiplication by table lookup. If one number has 

zero digits, then we return zero. In practice, if we were to use this algorithm, we would choose 

the base case to be that which is most convenient for the machine.  

Although this algorithm has better asymptotic performance than the standard quadratic algorithm, 

it is rarely used, because for small n the overhead is significant, and for larger n there are 

even better algorithms. These algorithms also make extensive use of divide and conquer.  
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Matrix Multiplication 

A fundamental numerical problem is the multiplication of two matrices. Figure 10.38 gives a 

simple O(n

3

) algorithm to compute C = AB, where A, B, and C are n  n matrices. The algorithm 

follows directly from the definition of matrix multiplication. To compute C

i

,

j

, we compute the 

dot product of the ith row in A with the jth column in B. As usual, arrays begin at index 0.  

For a long time it was assumed that (n

3

) was required for matrix multiplication. However, in 

the late sixties Strassen showed how to break the (n

3

) barrier. The basic idea of Strassen's 

algorithm is to divide each matrix into four quadrants, as shown in Figure 10.39. Then it is easy 

to show that  

C

1,1

 = A

1,1

B

1,1

 + A

1,2

B

2,1

 

C

1,2

 = A

1,1

B

1,2

 + A

1,2

B

2,2

 

C

2,1

 = A

2,1

B

1,1 

+ A

2,2

B

2,1

 

C

2,2

 = A

2,1

B

1,2

 + A

2,2

B

2,2

 

/* Standard matrix multiplication. Arrays start at 0 */

 

void

 

matrix_multiply( matrix A, matrix B, matrix C, unsigned int n )

 

{

 

int i, j, k;

 

for( i=0; i<n; i++ )     /* Initialization */

 

for( j=O; j<n; j++ )

 

C[i][j] = 0.0;

 

for( i=0; i<n; i++ )

 

for( j=0; j<n; j++ )

 

for( k=0; k<n; k++ )

 

C[i][j] += A[i][k] * B[k][j];

 

}

 

Figure 10.38 Simple O(n

3

) matrix multiplication

 

 

 

Figure 10.39 Decomposing AB = C into four quadrants

 

As an example, to perform the multiplication AB 
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we define the following eight n/2 by n/2 matrices: 

 

 

 

We could then perform eight n/2 by n/2 matrix multiplications and four n/2 by n/2 matrix 

additions. The matrix additions take O(n

2

) time. If the matrix multiplications are done 

recursively, then the running time satisfies  

T(n) = 8T(n/2) + O(n

2

).

 

From 

Theorem 10.6, we see that T(n) = O(n

3

), so we do not have an improvement. As we saw with 

integer multiplication, we must reduce the number of subproblems below 8. Strassen used a 

strategy similar to the integer multiplication divide and conquer algorithm and showed how to use 

only seven recursive calls by carefully arranging the computations. The seven multiplications are 

M

1

 = (A

1,2

 - A

2,2

)(B

2,1

 + B

2,2

)

 

M

2

 = (A

1,1

 + A

2,2

)(B

1,1

 + B

2,2

)

 

M

3

 = (A

1,1

 - A

2,1

)(B

1,1

 + B

1,2

)

 

M

4

 = (A

1,1

 + A

1,2

)B

2,2

 

M

5

 = A

1,1

(B

1,2

 - B

2,2

)

 

M

6

 = A

2,2

(B

2,1

 - B

1,1

)

 

M

7

 = (A

2,1

 + A

2,2

)B

1,1

 

Once the multiplications are performed, the final answer can be obtained with eight more 

additions.  

C

1,1

 = M

1

 + M

2

 - M

4

 + M

6

 

C

1,2

 = M

4

 + M

5

 

C

1,3

 = M

6

 + M

7

 

C

1,4

 = M

2

 - M

3

 + M

5

 - M

7

 

It is straightforward to verify that this tricky ordering produces the desired values. The 

running time now satisfies the recurrence  

T(n) = 7T(n/2) + O(n

2

).
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The solution of this recurrence is T(n) = O(n

log27

) = O(n

2.81

). 

 

As usual, there are details to consider, such as the case when n is not a power of two, but these 

are basically minor nuisances. Strassen's algorithm is worse than the straightforward algorithm 

until n is fairly large. It does not generalize for the case where the matrices are sparse 

(contain many zero entries), and it does not easily parallelize. When run with floating-point 

entries, it is less stable numerically than the classic algorithm. Thus, it is has only limited 

applicability. Nevertheless, it represents an important theoretical milestone and certainly shows 

that in computer science, as in many other fields, even though a problem seems to have an 

intrinsic complexity, nothing is certain until proven.  

10.3. Dynamic Programming

 

In the previous section, we have seen that a problem that can be mathematically expressed 

recursively can also be expressed as a recursive algorithm, in many cases yielding a significant 

performance improvement over a more naïve exhaustive search.  

Any recursive mathematical formula could be directly translated to a recursive algorithm, but the 

underlying reality is that often the compiler will not do justice to the recursive algorithm, and 

an inefficient program results. When we suspect that this is likely to be the case, we must 

provide a little more help to the compiler, by rewriting the recursive algorithm as a 

nonrecursive algorithm that systematically records the answers to the subproblems in a table. One 

technique that makes use of this approach is known as dynamic programming.  

10.3.1. Using a Table Instead of Recursion

 

In Chapter 2, we saw that the natural recursive program to compute the Fibonacci numbers is very 

inefficient. Recall that the program shown in Figure 10.40 has a running time T(n) that satisfies 

T(n)  T(n - 1) + T(n - 2). Since T(n) satisfies the same recurrence relation as the Fibonacci 

numbers and has the same initial conditions, T(n) in fact grows at the same rate as the Fibonacci 

numbers, and is thus exponential.  

On the other hand, since to compute F

n

, all that is needed is F

n-1

 and F

n-2

, we only need to 

record the two most recently computed Fibonacci numbers. This yields the O(n) algorithm in Figure 

10.41  

The reason that the recursive algorithm is so slow is because of the algorithm used to simulate 

recursion. To compute F

n

, there is one call to F

n-1

 and F

n-2

. However, since F

n-1

 recursively 

makes a call to F

n-2

 and F

n-3

, there are actually two separate calls to compute F

n-2

. If one 

traces out the entire algorithm, then we can see that F

n-3

 is computed three times, F

n-4

 is 

computed five times, F

n-5

 is computed eight times, and so on. As Figure 10.42 shows, the growth 

of redundant calculations is explosive. If the compiler's recursion simulation algorithm were 

able to keep a list of all precomputed values and not make a recursive call for an already solved 

subproblem, then this exponential explosion would be avoided. This is why the program in Figure 

10.41 is so much more efficient. calculations is explosive. If the compiler's recursion 

simulation algorithm were able to keep a list of all precomputed values and not make a recursive 

call for an already solved subproblem, then this exponential explosion would be avoided. This is 

why the program in Figure 10.41 is so much more efficient.  

/* Compute Fibonacci numbers as described in Chapter 1 */

 

unsigned int

 

fib( unsigned int n )

 

{
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if( n <= 1 ) 

return 1;

 

else

 

return( fib( n-1 ) + fib( n-2 ) );

 

}

 

Figure 10.40 Inefficient algorithm to compute Fibonacci numbers

 

unsigned int

 

fibonacci( unsigned int n )

 

{

 

unsigned int i, last, next_to_last, answer;

 

if( n <= 1 )

 

return 1;

 

last = next_to_last = 1;

 

for( i = 2; i <= n; i++ )

 

{

 

answer = last + next_to_last;

 

next_to_last = last;

 

last = answer;

 

}

 

return answer;

 

}

 

Figure 10.41 Linear algorithm to compute Fibonacci numbers

 

 

 

Figure 10.42 Trace of the recursive calculation of Fibonacci numbers

 

double

 

eval( unsigned int n )

 

{
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int i; 

double sum;

 

if( n == 0 )

 

return 1.0;

 

else

 

{

 

sum = 0.0;

 

for( i=0; i<n; i++ )

 

sum += eval(i);

 

return( 2.0 * sum / n + n );

 

}

 

}

 

Figure 10.43 Recursive program to evaluate 

 

As a second example, we saw in 

Chapter 7 how to solve the recurrence  

with C(0) = 1. Suppose that we want to check, numerically, whether the solution we obtained is 

correct. We could then write the simple program in Figure 10.43 to evaluate the recursion.  

Once again, the recursive calls duplicate work. In this case, the running time T(n) satisfies 

 because, as shown in Figure 10.44, there is one (direct) recursive call of 

each size from 0 to n -1, plus O(n) additional work (where else have we seen the tree shown in 

Figure 10.44?). Solving for T(n), we find that it grows exponentially. By using a table, we 

obtain the program in Figure 10.45. This program avoids the redundant recursive calls and runs in 

O(n

2

). It is not a perfect program; as an exercise, you should make the simple change that 

reduces its running time to O(n).  

 

 

Figure 10.44 Trace of the recursive calculation in eval

 

double

 

eval( unsigned int n )
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{ 

int i,j;

 

double sum, answer;

 

double *c;

 

c = (double*) malloc( sizeof (double)*(n+1) );

 

if( c == NULL )

 

fatal_error("Out of space!!!");

 

c[0] = 1.0;

 

for( i=1; i<=n; i++ )    /* Evaluate C

i

, 1  i  n */

 

{

 

sum = 0.0;

 

                       /*          i-1     */

 

for( j=0; j<i; j++ )   /* Evaluate    C

j

  */

 

                       /*          j=0     */

 

sum += c[j];

 

c[i] = 2.0 * sum/i + i;

 

}

 

answer = c[n];

 

free( c );

 

return answer;

 

}

 

Figure 10.45 Evaluating  with a table

 

10.3.2. Ordering Matrix Multiplications

 

Suppose we are given four matrices, A, B, C, and D, of dimensions A = 50 X 10, B = 10 X 40, C = 

40 X 30, and D = 30 X 5. Although matrix multiplication is not commutative, it is associative, 

which means that the matrix product ABCD can be parenthesized, and thus evaluated, in any order. 

The obvious way to multiply two matrices of dimensions p X q and q X r, respectively, uses pqr 
scalar multiplications. (Using a theoretically superior algorithm such as Strassen''s algorithm 

does not significantly alter the problem we will consider, so we will assume this performance 

bound.) What is the best way to perform the three matrix multiplications required to compute 

ABCD?  

In the case of four matrices, it is simple to solve the problem by exhaustive search, since there 

are only five ways to order the multiplications. We evaluate each case below:  
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 (A((BC)D)): Evaluating BC requires 10 X 40 X 30 = 12,000 multiplications. Evaluating (BC)D 

requires the 12,000 multiplications to compute BC, plus an additional 10 X 30 X 5 = 1,500 

multiplications, for a total of 13,500. Evaluating (A((BC)D) requires 13,500 multiplications for 

(BC)D, plus an additional 50 X 10 X 5 = 2,500 multiplications, for a grand total of 16,000 

multiplications.  

 (A(B(CD))): Evaluating CD requires 40 X 30 X 5 = 6,000 multiplications. Evaluating B(CD) 

requires 6,000 multiplications to compute CD, plus an additional 10 X 40 X 5 = 2,000 

multiplications, for a total of 8,000. Evaluating (A(B(CD)) requires 8,000 multiplications for B

(CD), plus an additional 50 X 10 X 5 = 2,500 multiplications, for a grand total of 10,500 

multiplications.  

 ((AB)(CD)): Evaluating CD requires 40 X 30 X 5 = 6,000 multiplications. Evaluating AB 

requires 50 X 10 X 40 = 20,000 multiplications. Evaluating ((AB)(CD)) requires 6,000 

multiplications for CD, 20,000 multiplications for AB, plus an additional 50 X 40 X 5 = 10,000 

multiplications for a grand total of 36,000 multiplications.  

 (((AB)C)D): Evaluating AB requires 50 X 10 X 40 = 20,000 multiplications. Evaluating (AB)C 

requires the 20,000 multiplications to compute AB, plus an additional 50 X 40 X 30 = 60,000 

multiplications, for a total of 80,000. Evaluating (((AB)C)D) requires 80,000 multiplications for 

(AB)C, plus an additional 50 X 30 X 5 = 7,500 multiplications, for a grand total of 87,500 

multiplications.  

 ((A(BC))D): Evaluating BC requires 10 X 40 X 30 = 12,000 multiplications. Evaluating A(BC) 

requires the 12,000 multiplications to compute BC, plus an additional 50 X 10 X 30 = 15,000 

multiplications, for a total of 27,000. Evaluating ((A(BC))D) requires 27,000 multiplications for 

A(BC), plus an additional 50 X 30 X 5 = 7,500 multiplications, for a grand total of 34,500 

multiplications.  

The calculations show that the best ordering uses roughly one-ninth the number of multiplications 

as the worst ordering. Thus, it might be worthwhile to perform a few calculations to determine 

the optimal ordering. Unfortunately, none of the obvious greedy strategies seems to work. 

Moreover, the number of possible orderings grows quickly. Suppose we define T(n) to be this 

number. Then T(1) = T(2) = 1, T(3) = 2, and T(4) = 5, as we have seen. In general,  

 

 

To see this, suppose that the matrices are A

1

, A

2

, . . . , A

n

, and the last multiplication 

performed is (A

1

A

2

. . . A

i

)(A

i+1

A

i+2 . . . 

A

n

). Then there are T(i) ways to compute (A

1

A

2 

 

  A

i

) and T(n - i) ways to compute (A

i+1

A

i+2 

   A

n

). Thus, there are T(i)T(n 

- i) ways to compute (A

1

A

2 

   A

i

) (A

i+1

A

i+2 

   A

n

) for each possible i. 

The solution of this recurrence is the well-known Catalan numbers, which grow exponentially. 

Thus, for large n, an exhaustive search through all possible orderings is useless. Nevertheless, 

this counting argument provides a basis for a solution that is substantially better than 

exponential. Let c

i

 be the number of columns in matrix A

i

 for 1  i  n. Then A

i

 has c

i-1
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rows, since otherwise the multiplications are not valid. We will define c

0

 to be the number of 

rows in the first matrix, A

1. 

 

Suppose m

Left,Right

 is the number of multiplications required to multiply A

Left

A

Left+1 

 

 A

Right-1

A

Right.

 For consistency, m

Left,Left

 = 0. Suppose the last multiplication is 

(A

Left

...A

i

)(A

i+1

    A

Right

), where Left  i  Right. Then the number of 

multiplications used is m

Left,i

 + m

i+1,Right

 + c

Left-1

c

i

c

Right.

 These three terms represent the 

multiplications required to compute (A

Left

    A

i

),(A

i+1

   A

Right

), and 

their product, respectively.  

If we define M

Left,Right

 to be the number of multiplications required in an optimal ordering, 

then, if Left < Right,  

 

 

This equation implies that if we have an optimal multiplication arrangement of A

Left 

  

 A

Right

, the subproblems A

Left 

   A

i

 and A

i+1

   A

Right

 cannot be 

performed suboptimally. This should be clear, since otherwise we could improve the entire result 

by replacing the suboptimal computation by an optimal computation.  

The formula translates directly to a recursive program, but, as we have seen in the last section, 

such a program would be blatantly inefficient. However, since there are only approximately n

2

/2 

values of M

Left,Right

 that ever need to be computed, it is clear that a table can be used to 

store these values. Further examination shows that if Right - Left = k, then the only values M

x,y

that are needed in the computation of M

Left,Right 

satisfy y - x < k. This tells us the order in 

which we need to compute the table.  

If we want to print out the actual ordering of the multiplications in addition to the final 

answer M

1,n

, then we can use the ideas from the shortest-path algorithms in Chapter 9. Whenever 

we make a change to M

Left,Right

, we record the value of i that is responsible. This gives the 

simple program shown in Figure 10.46.  

Although the emphasis of this chapter is not coding, it is worth noting that many programmers 

tend to shorten variable names to a single letter. c, i, and k are used as single-letter 

variables because this agrees with the names we have used in the description of the algorithm, 

which is very mathematical. However, it is generally best to avoid l as a variable name, because 

"l" looks too much like 1 and can make for very difficult debugging if you make a transcription 

error.  

Returning to the algorithmic issues, this program contains a triply nested loop and is easily 

seen to run in O(n

3

) time. The references describe a faster algorithm, but since the time to 

perform the actual matrix multiplication is still likely to be much larger than the time to 

compute the optimal ordering, this algorithm is still quite practical.  

/* Compute optimal ordering of matrix multiplication */

 

页码，39/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



/* c contains number of columns for each of the n matrices */ 

/* c[0] is the number of rows in matrix 1 */

 

/* Minimum number of multiplications is left in M[1][n] */

 

/* Actual ordering can be computed via */

 

/* another procedure using last_change */

 

/* M and last_change are indexed starting at 1, instead of zero */

 

void

 

opt_matrix( int c[], unsigned int n, two_d_array M,

 

two_d_array last_change)

 

{

 

int i, k, Left, Right, this_M;

 

for( Left = 1; Left <= n; Left++ )

 

M[Left][Left] = 0;

 

for( k = 1; k < n; k++) /* k is Right-Left */

 

for( Left = 1; Left <= n-k; Left++ )

 

{   /* for each position */

 

Right = Left + k;

 

M[Left][Right] = INT_MAX;

 

for( i = Left; i < Right; i++ )

 

{

 

this_M = M[Left][i] + M[i+1][Right]

 

+ c[Left-1] * c[i] * c[Right];

 

if( this_M < M[Left][Right] ) /* Update min */

 

{

 

M[Left][Right] = this_M;

 

last_change[Left][Right] = i;

 

}

 

}

 

}

 

}

 

Figure 10.46 Program to find optimal ordering of Matrix Multiplications

 

10.3.3. Optimal Binary Search Tree
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Our second dynamic programming example considers the following input: We are given a list of 

words, w

1

, w

2

,..., w

n

, and fixed probabilities p

1

, p

2

, . . . , p

n

 of their occurrence. The 

problem is to arrange these words in a binary search tree in a way that minimizes the expected 

total access time. In a binary search tree, the number of comparisons needed to access an element 

at depth d is d + 1, so if w

i

 is placed at depth d

i

, then we want to minimize . 

 

As an example, Figure 10.47 shows seven words along with their probability of occurrence in some 

context. Figure 10.48 shows three possible binary search trees. Their searching costs are shown 

in Figure 10.49.  

The first tree was formed using a greedy strategy. The word with the highest probability of being 

accessed was placed at the root. The left and right subtrees were then formed recursively. The 

second tree is the perfectly balanced search tree. Neither of these trees is optimal, as 

demonstrated by the existence of the third tree. From this we can see that neither of the obvious 

solutions works.  

This is initially surprising, since the problem appears to be very similar to the construction of 

a Huffman encoding tree, which, as we have already seen, can be solved by a greedy algorithm. 

Construction of an optimal binary search tree is harder, because the data is not constrained to 

appear only at the leaves, and also because the tree must satisfy the binary search tree 

property.  

A dynamic programming solution follows from two observations. Once again, suppose we are trying 

to place the (sorted) words w

Left

, w

Left+1

, . . . , w

Right-1

, w

Right

 into a binary search tree. 

Suppose the optimal binary search tree has w

i

 as the root, where Left  i  Right. Then 

the left subtree must contain w

Left

, . . . ,w

i-1

, and the right subtree must contain w

i+1

 . . . 

,w

Right

 (by the binary search tree property). Further, both of these subtrees must also be 

optimal, since otherwise they could be replaced by optimal subtrees, which would give a better 

solution for w

Left

 . . . , w

Right

. Thus, we can write a formula for the cost C

Left,Right

 of an 

optimal binary search tree. Figure 10.50 may be helpful.  

If Left > Right, then the cost of the tree is 0; this is the NULL case, which we always have for 

binary search trees. Otherwise, the root costs p

i

. The left subtree has a cost of C

Left,i-1

, 

relative to its root, and the right subtree has a cost of C

i+l,Right

 relative to its root. As 

Figure 10.50 shows, each node in these subtrees is one level deeper from w

i

 than from their 

respective roots, so we must add . This gives the formula 

 

 

 

From this equation, it is straightforward to write a program to compute the cost of the optimal 

binary search tree. As usual, the actual search tree can be maintained by saving the value of i 

that minimizes C

Left,Right.

 The standard recursive routine can be used to print the actual tree. 

Word  Probability
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----------------- 

  a      0.22

 

 am      0.18

 

and      0.20

 

egg      0.05

 

 if      0.25

 

the      0.02

 

two      0.08

 

Figure 10.47 Sample input for optimal binary search tree problem

 

 

 

Figure 10.48 Three possible binary search trees for data in previous table

 

    Input              Tree #1         Tree #2          Tree #3

 

-----------------------------------------------------------------

 

Word  Probability    Access Cost     Access Cost      Access Cost

 

 w

i

       p

i       

Once  Sequence  Once  Sequence  Once  Sequence

 

-----------------------------------------------------------------

 

  a      0.22       2      0.44      3     0.66     2      0.44

 

 am      0.18       4      0.72      2     0.36     3      0.54

 

and      0.20       3      0.60      3     0.60     1      0.20

 

egg      0.05       4      0.20      1     0.05     3      0.15

 

 if      0.25       1      0.25      3     0.75     2      0.50

 

the      0.02       3      0.06      2     0.04     4      0.08

 

two      0.08       2      0.16      3     0.24     3      0.24

 

-----------------------------------------------------------------

 

Totals   1.00              2.43            2.70            2.15

 

Figure 10.49 Comparison of the three binary search trees

 

页码，42/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



 

 

Figure 10.50 Structure of an optimal binary search tree

 

Figure 10.51 shows the table that will be produced by the algorithm. For each subrange of words, 

the cost and root of the optimal binary search tree are maintained. The bottommost entry, of 

course, computes the optimal binary search tree for the entire set of words in the input. The 

optimal tree is the third tree shown in Fig. 10.48.  

The precise computation for the optimal binary search tree for a particular subrange, namely 

am..if, is shown in Figure 10.52. It is obtained by computing the minimum-cost tree obtained by 

placing am, and, egg, and if at the root. For instance, when and is placed at the root, the left 

subtree contains am..am (of cost 0.18, via previous calculation), the right subtree contains 

egg..if (of cost 0.35), and , for a total cost of 1.21. 

 

 

 

Figure 10.51 Computation of the optimal binary search tree for sample input
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Figure 10.52 Computation of table entry (1.21, and) for am..if

 

The running time of this algorithm is O(n

3

), because when it is implemented, we obtain a triple 

loop. An O(n

2

) algorithm for the problem is sketched in the exercises. 

 

10.3.4. All-Pairs Shortest Path

 

Our third and final dynamic programming application is an algorithm to compute shortest weighted 

paths between every pair of points in a directed graph G = (V, E). In Chapter 9, we saw an 

algorithm for the single-source shortest-path problem, which finds the shortest path from some 

arbitrary vertex s to all others. That algorithm (Dijkstra's) runs in O( V

2

) time on 

dense graphs, but substantially faster on sparse graphs. We will give a short algorithm to solve 

the all-pairs problem for dense graphs. The running time of the algorithm is O( V

3

), 

which is not an asymptotic improvement over V  iterations of Dijkstra's algorithm but 

could be faster on a very dense graph, because its loops are tighter. The algorithm also performs 

correctly if there are negative edge costs, but no negative-cost cycles; Dijkstra's algorithm 

fails in this case.  

Let us recall the important details of Dijkstra's algorithm (the reader may wish to review 

Section 9.3). Dijkstra's algorithm starts at a vertex s and works in stages. Each vertex in the 

graph is eventually selected as an intermediate vertex. If the current selected vertex is v, then 

for each w  V, we set d

w

 = min(d

w

, d

v

 + c

v,w

). This formula says that the best distance to w 

(from s) is either the previously known distance to w from s, or the result of going from s to v 

(optimally) and then directly from v to w.  

Dijkstra's algorithm provides the idea for the dynamic programming algorithm: we select the 

vertices in sequential order. We will define D

k,i,j

 to be the weight of the shortest path from v

i

to v

j

 that uses only v

1

, v

2

, . . . ,v

k

 as intermediates. By this definition, D

0,i,j

 = c

i,j

, where 

c

i,j

 is  if (v

i

, v

j

) is not an edge in the graph. Also, by definition, D

|V|,i,j

 is the 
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shortest path from vi to vj in the graph.  

/* Compute All-Shortest Paths */

 

/* A[] contains the adjacency matrix */

 

/* with A[i][i] presumed to be zero */

 

/* D[] contains the values of shortest path */

 

/* |V | is the number of vertices */

 

/* A negative cycle exists iff */

 

/* d[i][j] is set to a negative value at line 9 */

 

/* Actual Path can be computed via another procedure using path */

 

/* All arrays are indexed starting at 0 */

 

void

 

all_pairs( two_d_array A, two_d_array D, two_d_array path )

 

{

 

int i, j, k;

 

/*1*/        for( i = 0; i < |V |; i++ ) /* Initialize D and path */

 

/*2*/               for( j = 0; j < |V |; j++ )

 

{

 

/*3*/                  D[i][j] = A[i][j];

 

/*4*/                  path[i][j] = NOT_A_VERTEX;

 

}

 

/*5*/        for( k = 0; k < |v |; k++ )

 

/* Consider each vertex as an intermediate */

 

/*6*/        for( i = 0; i < |V |; i++ )

 

/*7*/                  for( j = 0; j < |V |; j++ )

 

/*8*/                       if( d[i][k] + d[k][j] < d[i][j] )

 

/*update min */

 

{

 

/*9*/                            d[i][j] = d[i][k] + d[k][j];

 

/*10*/                           path[i][j] = k;

 

}

 

}

 

Figure 10.53 All-pairs shortest path
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As Figure 10.53 shows, when k > 0 we can write a simple formula for D

k,i,j

. The shortest path 

from v

i

 to v

j

 that uses only v

1

, v

2

, . . . ,v

k

 as intermediates is the shortest path that either 

does not use v

k 

as an intermediate at all, or consists of the merging of the two paths v

i

 v

k

 

and v

k

  v

j

, each of which uses only the first k - 1 vertices as intermediates. This leads to 

the formula  

D

k,i,j

 = min{D

k - 1,i,j

, D

k - 1,i,k

 + D

k - 1,k,j

}

 

The time requirement is once again O(|V|

3

). Unlike the two previous dynamic programming examples, 

this time bound has not been substantially lowered by another approach. Because the kth stage 

depends only on the (k - 1)st stage, it appears that only two |V| X |V| matrices need to be 

maintained.  

However, using k as an intermediate vertex on a path that starts or finishes with k does not 

improve the result unless there is a negative cycle. Thus, only one matrix is necessary, because 

D

k-1,i,k

 = D

k,i,k

 and D

k-1,k,j

 = D

k,k,j

, which implies that none of the terms on the right change 

values and need to be saved. This observation leads to the simple program in Figure 10.53, which 

numbers vertices starting at zero to conform with C's conventions.  

On a complete graph, where every pair of vertices is connected (in both directions), this 

algorithm is almost certain to be faster than |V| iterations of Dijkstra's algorithm, because the 

loops are so tight. Lines 1 through 4 can be executed in parallel, as can lines 6 through 10. 

Thus, this algorithm seems to be well-suited for parallel computation.  

Dynamic programming is a powerful algorithm design technique, which provides a starting point for 

a solution. It is essentially the divide and conquer paradigm of solving simpler problems first, 

with the important difference being that the simpler problems are not a clear division of the 

original. Because subproblems are repeatedly solved, it is important to record their solutions in 

a table rather than recompute them. In some cases, the solution can be improved (although it is 

certainly not always obvious and frequently difficult), and in other cases, the dynamic 

programming technique is the best approach known.  

In some sense, if you have seen one dynamic programming problem, you have seen them all. More 

examples of dynamic programming can be found in the exercises and references.  

10.4. Randomized Algorithms

 

Suppose you are a professor who is giving weekly programming assignments. You want to make sure 

that the students are doing their own programs or, at the very least, understand the code they 

are submitting. One solution is to give a quiz on the day that each program is due. On the other 

hand, these quizzes take time out of class, so it might only be practical to do this for roughly 

half of the programs. Your problem is to decide when to give the quizzes.  

Of course, if the quizzes are announced in advance, that could be interpreted as an implicit 

license to cheat for the 50 percent of the programs that will not get a quiz. One could adopt the 

unannounced strategy of giving quizzes on alternate programs, but students would figure out the 

strategy before too long. Another possibility is to give quizzes on what seems like the important 

programs, but this would likely lead to similar quiz patterns from semester to semester. Student 

grapevines being what they are, this strategy would probably be worthless after a semester.  

One method that seems to eliminate these problems is to use a coin. A quiz is made for every 

program (making quizzes is not nearly as time-consuming as grading them), and at the start of 

class, the professor will flip a coin to decide whether the quiz is to be given. This way, it is 

impossible to know before class whether or not the quiz will occur, and these patterns do not 

repeat from semester to semester. Thus, the students will have to expect that a quiz will occur 

页码，46/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



with 50 percent probability, regardless of previous quiz patterns. The disadvantage is that it is 

possible that there is no quiz for an entire semester. This is not a likely occurrence, unless 

the coin is suspect. Each semester, the expected number of quizzes is half the number of 

programs, and with high probability, the number of quizzes will not deviate much from this.  

This example illustrates what we call randomized algorithms. At least once during the algorithm, 

a random number is used to make a decision. The running time of the algorithm depends not only on 

the particular input, but also on the random numbers that occur.  

The worst-case running time of a randomized algorithm is almost always the same as the worst-case 

running time of the nonrandomized algorithm. The important difference is that a good randomized 

algorithm has no bad inputs, but only bad random numbers (relative to the particular input). This 

may seem like only a philosophical difference, but actually it is quite important, as the 

following example shows.  

Consider two variants of quicksort. Variant A uses the first element as pivot, while variant B 

uses a randomly chosen element as pivot. In both cases, the worst-case running time is (n

2

), 

because it is possible at each step that the largest element is chosen as pivot. The difference 

between these worst cases is that there is a particular input that can always be presented to 

variant A to cause the bad running time. Variant A will run in (n

2

) time every single time it 

is given an already sorted list. If variant B is presented with the same input twice, it will 

have two different running times, depending on what random numbers occur.  

Throughout the text, in our calculations of running times, we have assumed that all inputs are 

equally likely. This is not true, because nearly sorted input, for instance, occurs much more 

often than is statistically expected, and this causes problems, particularly for quicksort and 

binary search trees. By using a randomized algorithm, the particular input is no longer 

important. The random numbers are important, and we can get an expected running time, where we 

now average over all possible random numbers instead of over all possible inputs. Using quicksort 

with a random pivot gives an O(n log n)-expected-time algorithm. This means that for any input, 

including already-sorted input, the running time is expected to be O(n log n), based on the 

statistics of random numbers. An expected running time bound is somewhat stronger than an 

average-case bound but, of course, is weaker than the corresponding worst-case bound. On the 

other hand, as we saw in the selection problem, solutions that obtain the worst-case bound are 

frequently not as practical as their average-case counterparts. Randomized algorithms usually 

are.  

In this section we will examine two uses of randomization. First, we will see a novel scheme for 

supporting the binary search tree operations in O(log n) expected time. Once again, this means 

that there are no bad inputs, just bad random numbers. From a theoretical point of view, this is 

not terribly exciting, since balanced search trees achieve this bound in the worst case. 

Nevertheless, the use of randomization leads to relatively simple algorithms for searching, 

inserting, and especially deleting.  

Our second application is a randomized algorithm to test the primality of large numbers. No 

efficient polynomial-time nonrandomized algorithms are known for this problem. The algorithm we 

present runs quickly but occasionally makes an error. The probability of error can, however, be 

made negligibly small.  

10.4.1. Random Number Generators

 

Since our algorithms require random numbers, we must have a method to generate them. Actually, 

true randomness is virtually impossible to do on a computer, since these numbers will depend on 

the algorithm, and thus cannot possibly be random. Generally, it suffices to produce pseudorandom

numbers, which are numbers that appear to be random. Random numbers have many known statistical 

properties; pseudorandom numbers satisfy most of these properties. Surprisingly, this too is much 

easier said than done.  
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Suppose we only need to flip a coin; thus, we must generate a 0 or 1 randomly. One way to do this 

is to examine the system clock. The clock might record time as an integer that counts the number 

of seconds since January 1, 1970.

*

 We could then use the lowest bit. The problem is that this 

does not work well if a sequence of random numbers is needed. One second is a long time, and the 

clock might not change at all while the program is running. Even if the time were recorded in 

units of microseconds, if the program were running by itself the sequence of numbers that would 

be generated would be far from random, since the time between calls to the generator would be 

essentially identical on every program invocation. We see, then, that what is really needed is a 

sequence of random numbers.

ç These numbers should appear independent. If a coin is flipped and 
heads appears, the next coin flip should still be equally likely to come up heads or tails.  

*UNIX does this. 

 

çWe will use random in place of pseudorandom in the rest of this section. 

 

The standard method to generate random numbers is the linear congruential generator, which was 

first described by Lehmer in 1951. Numbers x

1

, x

2

, . . . are generated satisfying  

x

i + 1

 = ax

i

 mod m.

 

To start the sequence, some value of x

0

 must be given. This value is known as the seed. If x

0

 = 

0, then the sequence is far from random, but if a and m are correctly chosen, then any other 1 

 x

0 

< m is equally valid. If m is prime, then x

i

 is never 0. As an example, if m = 11, a = 7, 

and x

0 

= 1, then the numbers generated are  

7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, . . .

 

Notice that after m - 1 = 10 numbers, the sequence repeats. Thus, this sequence has a period of m

-1, which is as large as possible (by the pigeonhole principle). If m is prime, there are always 

choices of a that give a full period of m - 1. Some choices of a do not; if a = 5 and x

0 

= 1, the 

sequence has a short period of 5.  

5, 3, 4, 9, 1, 5, 3, 4, . . .

 

Obviously, if m is chosen to be a large, 31-bit prime, the period should be significantly large 

for most applications. Lehmer suggested the use of the 31-bit prime m = 2

31 

- 1 = 2,147,483,647. 

For this prime, a = 7

5 

= 16,807 is one of the many values that gives a full-period generator. Its 

use has been well studied and is recommended by experts in the field. We will see later that with 

random number generators, tinkering usually means breaking, so one is well advised to stick with 

this formula until told otherwise.  

This seems like a simple routine to implement. Generally, a global variable is used to hold the 

current value in the sequence of x's. This is the rare case where a global variable is useful. 

This global variable is initialized by some routine. When debugging a program that uses random 

numbers, it is probably best to set x

0 

= 1, so that the same random sequence occurs all the time. 

When the program seems to work, either the system clock can be used or the user can be asked to 

input a value for the seed.  

It is also common to return a random real number in the open interval (0, 1) (0 and 1 are not 

possible values); this can be done by dividing by m. From this, a random number in any closed 

interval [a, b] can be computed by normalizing. This yields the "obvious" routine in Figure 10.54

which, unfortunately, works on few machines.  

The problem with this routine is that the multiplication could overflow; although this is not an 
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error, it affects the result and thus the pseudo-randomness. Schrage gave a procedure in which 

all of the calculations can be done on a 32-bit machine without overflow. We compute the quotient 

and remainder of m/a and define these as q and r, respectively. In our case, q = 127,773, r = 

2,836, and r < q. We have  

 

 

unsigned int seed;        /* global variable */

 

#define a     16807            /* 7^5 */

 

#define m     2147483647       /* 2^31 - 1 */

 

double

 

random( void )

 

{

 

seed = ( a * seed ) % m;

 

return( ( (double) seed ) / m );

 

}

 

Figure 10.54 Random number generator that does not work

 

Since , we can replace the leading ax

i

 and obtain 

 

 

 

Since m = aq + r, it follows that aq - m = -r. Thus, we obtain 

 

 

 

The term  is either 0 or 1, because both terms are integers and their 

difference lies between 0 and 1. Thus, we have  
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A quick check shows that because r < q, all the remaining terms can be calculated without 

overflow (this is one of the reasons for chosing a = 7

5

). Furthermore, (x

i

) = 1 only if the 

remaining terms evaluate to less than zero. Thus (x

i

) does not need to be explicitly computed 

but can be determined by a simple test. This leads to the program in Figure 10.55.  

This program works as long as INT_MAX  2

31 

- 1. One might be tempted to assume that all 

machines have a random number generator at least as good as the one in Figure 10.55 in their 

standard library. Sadly, this is not true. Many libraries have generators based on the function  

x

i+1

 = (ax

i

 + c) mod 2

b

 

where b is chosen to match the number of bits in the machine's integer, and c is odd. These 

libraries also return x

i

, instead of a value between 0 and 1. Unfortunately, these generators 

always produce values of x

i 

that alternate between even and odd--hardly a desirable property. 

Indeed, the lower k bits cycle with period 2

k 

(at best). Many other random number generators have 

much smaller cycles than the one provided in Figure 10.55. These are not suitable for the case 

where long sequences of random numbers are needed. Finally, it may seem that we can get a better 

random number generator by adding a constant to the equation. For instance, it seems that  

x

i+1 

= (16807x

i

 + 1) mod (2

31 

- 1)

 

would somehow be even more random. This illustrates how fragile these generators are. 

 

[16807(1319592028) + 1] mod (2

31

-1) = 1319592028,

 

so if the seed is 1,319,592,028, the generator gets stuck in a cycle of period 1. 

 

unsigned int seed;      /* global variable */

 

#define a      16807          /* 7^5 */

 

#define m      2147483647     /* 2^31 - 1*/

 

#define q      127773         /* m/a */

 

#define r      2836           /* m%a */

 

double

 

random( void )

 

{

 

int tmp_seed;

 

tmp_seed = a * ( seed % q ) - r * (seed / q );

 

if( tmp_seed >= 0)

 

seed = tmp_seed;
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else 

seed = tmp_seed + m;

 

return( ( (double) seed ) / m );

 

}

 

Figure 10.55 Random number generator that works on 32 bit machines

 

10.4.2. Skip Lists

 

Our first use of randomization is a data structure that supports both searching and insertion in 

O(log n) expected time. As mentioned in the introduction to this section, this means that the 

running time for each operation on any input sequence has expected value O(log n), where the 

expectation is based on the random number generator. It is possible to add deletion and all the 

operations that involve ordering and obtain expected time bounds that match the average time 

bounds of binary search trees.  

The simplest possible data structure to support searching is the linked list. Figure 10.56 shows 

a simple linked list. The time to perform a search is proportional to the number of nodes that 

have to be examined, which is at most n.  

Figure 10.57 shows a linked list in which every other node has an additional pointer to the node 

two ahead of it in the list. Because of this, at most n/2  + 1 nodes are examined in the 

worst case.  

We can extend this idea and obtain Figure 10.58. Here, every fourth node has a pointer to the 

node four ahead. Only n/4  + 2 nodes are examined. 

 

The limiting case of this argument is shown in Figure 10.59. Every 2

i

th node has a pointer to the 

node 2

i

 ahead of it. The total number of pointers has only doubled, but now at most log n

 nodes are examined during a search. It is not hard to see that the total time spent for a 

search is O(log n), because the search consists of either advancing to a new node or dropping to 

a lower pointer in the same node. Each of these steps consumes at most O(log n) total time during 

a search. Notice that the search in this data structure is essentially a binary search.  

 

 

Figure 10.56 Simple linked list

 

 

 

Figure 10.57 Linked list with pointers to two cells ahead
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Figure 10.58 Linked list with pointers to four cells ahead

 

 

 

Figure 10.59 Linked list with pointers to 2

i cells ahead

 

 

 

Figure 10.60 A skip list

 

The problem with this data structure is that it is much too rigid to allow efficient insertion. 

The key to making this data structure usable is to relax the structure conditions slightly. We 

define a level k node to be a node that has k pointers. As Figure 10.59 shows, the ith pointer in 

any level k node (k  i) points to the next node with at least i levels. This is an easy 

property to maintain; however, Figure 10.59 shows a more restrictive property than this. We thus 

drop the restriction that the ith pointer points to the node 2

i

ahead, and we replace it with the 

less restrictive condition above.  

When it comes time to insert a new element, we allocate a new node for it. We must at this point 

decide what level the node should be. Examining Figure 10.59, we find that roughly half the nodes 

are level 1 nodes, roughly a quarter are level 2, and, in general, approximately 1/2

i

 nodes are 

level i. We choose the level of the node randomly, in accordance with this probability 

distribution. The easiest way to do this is to flip a coin until a head occurs and use the total 

number of flips as the node level. Figure 10.60 shows a typical skip list.  

Given this, the skip list algorithms are simple to describe. To perform a find, we start at the 

highest pointer at the header. We traverse along this level until we find that the next node is 

larger than the one we are looking for (or ). When this occurs, we go to the next lower level and 

continue the strategy. When progress is stopped at level 1, either we are in front of the node we 

are looking for, or it is not in the list. To perform an insert, we proceed as in a find, and 

keep track of each point where we switch to a lower level. The new node, whose level is 

determined randomly, is then spliced into the list. This operation is shown in Figure 10.61.  

A cursory analysis shows that since the expected number of nodes at each level is unchanged from 

the original (nonrandomized) algorithm, the total amount of work that is expected to be performed 

traversing to nodes on the same level is unchanged. This tells us that these operations have O

(log n) expected costs. Of course, a more formal proof is required, but it is not much different 
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from this.  

Skip lists are similar to hash tables, in that they require an estimate of the number of elements 

that will be in the list (so that the number of levels can be determined). If an estimate is not 

available, we can assume a large number or use a technique similar to rehashing. Experiments have 

shown that skip lists are as efficient as many balanced search tree implementations and are 

certainly much simpler to implement in many languages.  

10.4.3. Primality Testing

 

In this section we examine the problem of determining whether or not a large number is prime. As 

was mentioned at the end of Chapter 2, some cryptography schemes depend on the difficulty of 

factoring a large, 200-digit number into two 100-digit primes. In order to implement this scheme, 

we need a method of generating these two primes. The problem is of major theoretical interest, 

because nobody now knows how to test whether a d-digit number n is prime in time polynomial in d. 

For instance, the obvious method of testing for the divisibility by odd numbers from 3 to  

requires roughly  divisions, which is about 2

d/2

. On the other hand, this problem is not 

thought to be NP-complete; thus, it is one of the few problems on the fringe--its complexity is 

unknown at the time of this writing.  

 

 

Figure 10.61 Before and after an insertion

 

In this chapter, we will give a polynomial-time algorithm that can test for primality. If the 

algorithm declares that the number is not prime, we can be certain that the number is not prime. 

If the algorithm declares that the number is prime, then, with high probability but not 100 

percent certainty, the number is prime. The error probability does not depend on the particular 

number that is being tested but instead depends on random choices made by the algorithm. Thus, 

this algorithm occasionally makes a mistake, but we will see that the error ratio can be made 

arbitrarily negligible.  

The key to the algorithm is a well-known theorem due to Fermat. 

 

THEOREM 10.10. 

 

Fermat's Lesser Theorem: If p is prime, and 0 < a < p, then a

p-1

  1(mod p). 

 

PROOF: 

 

A proof of this theorem can be found in any textbook on number theory. 
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For instance, since 67 is prime, 2

66

  1(mod 67). This suggests an algorithm to test whether a 

number n is prime. Merely check whether 2

n-1

  1(mod n). If  (mod n), then we can be 

certain that n is not prime. On the other hand, if the equality holds, then n is probably prime. 

For instance, the smallest n that satisfies 2

n-1

  1(mod n) but is not prime is n = 341. 

 

This algorithm will occasionally make errors, but the problem is that it will always make the 

same errors. Put another way, there is a fixed set of n for which it does not work. We can 

attempt to randomize the algorithm as follows: Pick 1 < a < n - 1 at random. If a

n-1

  1(mod 

n), declare that n is probably prime, otherwise declare that n is definitely not prime. If n = 

341, and a = 3, we find that 3

340

  56(mod 341). Thus, if the algorithm happens to choose a = 

3, it will get the correct answer for n = 341.  

Although this seems to work, there are numbers that fool even this algorithm for most choices of 

a. One such set of numbers is known as the Carmichael numbers. These are not prime but satisfy 

a

n-1

  1(mod n) for all 0 < a < n that are relatively prime to n. The smallest such number is 

561. Thus, we need an additional test to improve the chances of not making an error.  

In Chapter 7, we proved a theorem related to quadratic probing. A special case of this theorem is 

the following:  

THEOREM 10.11. 

 

If p is prime and 0 < x < p, the only solutions to x

2

 1(mod p) are x = 1, p - 1. 

 

PROOF: 

 

x

2

  1(mod p) implies that x

2

 -1  0(mod p). This implies (x - 1)(x + 1)  0(mod p). 

Since p is prime, 0  x < p, and p must divide either (x - 1) or (x + 1), the theorem follows. 

Therefore, if at any point in the computation of a

n-1

mod n we discover a violation of this 

theorem, we can conclude that n is definitely not prime. If we use power, from Section 2.4.4, we 

see that there will be several opportunities to apply this test. We modify this routine to 

perform operations mod n, and apply the test of Theorem 10.11. This strategy is implemented in 

Figure 10.62. Because power needs to return two pieces of information, we pass the address of 

these items ( result and what_n_is ) by pointers.  

Recall that if test_prime returns DEFINITELY_COMPOSITE, it has proven that n cannot be prime. The 

proof is nonconstructive, because it gives no method of actually finding the factors. It has been 

shown that for any (sufficiently large) n, at most (n - 9)/4 values of a fool this algorithm. 

Thus, if a is chosen at random, and the algorithm answers PROBABLY_PRIME, then the algorithm is 

correct at least 75 percent of the time. Suppose test_prime is run 50 times. The probability that 

the algorithm is fooled once is at most 1/4. Thus, the probability that 50 independent random 

trials fool the algorithm is never more than 1/4

50

 = 2

-100

. This is actually a very conservative 

estimate, which holds for only a few choices of n. Even so, one is more likely to see a hardware 

error than an incorrect claim of primality.  
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10.5. Backtracking Algorithms 

The last algorithm design technique we will examine is backtracking. In many cases, a 

backtracking algorithm amounts to a clever implementation of exhaustive search, with generally 

unfavorable performance. This is not always the case, however, and even so, in some cases, the 

savings over a brute force exhaustive search can be significant. Performance is, of course, 

relative: An O(n

2

) algorithm for sorting is pretty bad, but an O(n

5

) algorithm for the traveling 

salesman (or any NP-complete) problem would be a landmark result.  

A practical example of a backtracking algorithm is the problem of arranging furniture in a new 

house. There are many possibilities to try, but typically only a few are actually considered. 

Starting with no arrangement, each piece of furniture is placed in some part of the room. If all 

the furniture is placed and the owner is happy, then the algorithm terminates. If we reach a 

point where all subsequent placement of furniture is undesirable, we have to undo the last step 

and try an alternative. Of course, this might force another undo, and so forth. If we find that 

we undo all possible first steps, then there is no placement of furniture that is satisfactory. 

Otherwise, we eventually terminate with a satisfactory arrangement. Notice that although this 

algorithm is essentially brute force, it does not try all possibilities directly. For instance, 

arrangements that consider placing the sofa in the kitchen are never tried. Many other bad 

arrangements are discarded early, because an undesirable subset of the arrangement is detected. 

The elimination of a large group of possibilities in one step is known as pruning.  

We will see two examples of backtracking algorithms. The first is a problem in computational 

geometry. Our second example shows how computers select moves in games, such as chess and 

checkers.  

10.5.1. The Turnpike Reconstruction Problem

 

Suppose we are given n points, p

1

, p

2

, . . . , p

n

, located on the x-axis. x

i

 is the x coordinate 

of p

i

. Let us further assume that x

1

 = 0 and the points are given from left to right. These n 

points determine n(n - 1)/2 (not necessarily unique) distances d

1

, d

2

, . . . , d

n

 between every 

pair of points of the form | x

i

 - x

j 

| (i  j ). It is clear that if we are given the set of 

points, it is easy to construct the set of distances in O(n

2

) time. This set will not be sorted, 

but if we are willing to settle for an O(n

2 

log n) time bound, the distances can be sorted, too. 

The turnpike reconstruction problem is to reconstruct a point set from the distances. This finds 

applications in physics and molecular biology (see the references for pointers to more specific 

information). The name derives from the analogy of points to turnpike exits on East Coast 

highways. Just as factoring seems harder than multiplication, the reconstruction problem seems 

harder than the construction problem. Nobody has been able to give an algorithm that is 

guaranteed to work in polynomial time. The algorithm that we will present seems to run in O(n

2

log 

n); no counterexample to this conjecture is known, but it is still just that - a conjecture.  

enum test_result { PROBABLY_PRIME, DEFINITELY_COMPOSITE };

 

typedef enum test_result test_result;

 

/* Compute result = a

p

 mod n. */

 

/* If at any point x

2

  1(mod n) is detected with x  1, x  n - 1, */
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/* then set what_n_is to DEFINITELY_COMPOSITE */ 

/* We are assuming very large integers, so this is pseudocode. */

 

void

 

power( unsigned int a, unsigned int p, unsigned int n,

 

unsigned int *result, test_result *what_n_is )

 

{

 

unsigned int x;

 

/*1*/       if( p = 0 )         /* Base case */

 

/*2*/            *result = 1;

 

else

 

{

 

/*3*/            power( a, p/2, n, &x, what_n_is );

 

/*4*/            *result = (x * x) % n;

 

/* Check whether x

2

  1(mod n), x  1, x  n - 1 */

 

/*5*/            if( (*result = 1) && (x != 1) && (x != n-1) )

 

/*6*/                 *what_n_is = DEFINITELY_COMPOSITE;

 

/* If p is odd, we need one more a */

 

/*7*/            if( (p % 2) = 1 )

 

/*8*/                 *result = (*result * a) % n;

 

}

 

}

 

/* test_prime: Test whether n  3 is prime using one value of a */

 

/* repeat this procedure as many times as needed */

 

/* for desired error rate */

 

test_result

 

test_prime( unsigned int n )

 

{

 

unsigned int a, result;

 

test_result what_n_is;

 

/*9*/       a = rand_int( 2, n-2 ); /* choose a randomly from 2..n-2 */

 

/*10*/      what_n_is = PROBABLY_PRIME;
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/* Compute a

n-1

 mod n */

 

/*11*/      power( a, n-1, n, &result, &what_n_is );

 

/*12*/      if( ( result != 1) | | (what_n_is = DEFINITELY_COMPOSITE) )

 

/*13*/           return DEFINITELY_COMPOSITE;

 

else

 

/*14*/           return PROBABLY_PRIME;

 

}

 

Figure 10.62 A probabilistic primality testing algorithm

 

Of course, given one solution to the problem, an infinite number of others can be constructed by 

adding an offset to all the points. This is why we insist that the first point is anchored at 0 

and that the point set that constitutes a solution is output in nondecreasing order.  

Let D be the set of distances, and assume that | D | = m = n(n - 1)/2. As an example, suppose 

that  

D = {1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 10}

 

Since | D | = 15, we know that n = 6. We start the algorithm by setting x

1

 = 0. Clearly, x

6

= 10, 

since 10 is the largest element in D. We remove 10 from D. The points that we have placed and the 

remaining distances are as shown in the following figure.  

 

 

The largest remaining distance is 8, which means that either x

2

 = 2 or x

5

 = 8. By symmetry, we 

can conclude that the choice is unimportant, since either both choices lead to a solution (which 

are mirror images of each other), or neither do, so we can set x

5

 = 8 without affecting the 

solution. We then remove the distances x

6

 - x

5

 = 2 and x

5

 - x

1

 = 8 from D, obtaining  

 

 

The next step is not obvious. Since 7 is the largest value in D, either x

4

 = 7 or x

2

 = 3. If x

4

= 

7, then the distances x

6

 - 7 = 3 and x

5

 - 7 = 1 must also be present in D. A quick check shows 

that indeed they are. On the other hand, if we set x

2

 = 3, then 3 - x

1

 = 3 and x

5

 - 3 = 5 must be 

present in D. These distances are also in D, so we have no guidance on which choice to make. 

Thus, we try one and see if it leads to a solution. If it turns out that it does not, we can come 

back and try the other. Trying the first choice, we set x

4

 = 7, which leaves  
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At this point, we have x

1

 = 0, x

4

 = 7, x

5

 = 8, and x

6

 = 10. Now the largest distance is 6, so 

either x

3

 = 6 or x

2

 = 4. But if x

3

 = 6, then x

4

 - x

3

 = 1, which is impossible, since 1 is no 

longer in D. On the other hand, if x

2

 = 4 then x

2

 - x

0

 = 4, and x

5

 - x

2

 = 4. This is also 

impossible, since 4 only appears once in D. Thus, this line of reasoning leaves no solution, so 

we backtrack.  

Since x

4

 = 7 failed to produce a solution, we try x

2

 = 3. If this also fails, we give up and 

report no solution. We now have  

 

 

Once again, we have to choose between x

4

 = 6 and x

3

 = 4. x

3

 = 4 is impossible, because D only has 

one occurrence of 4, and two would be implied by this choice. x

4

= 6 is possible, so we obtaining 

 

 

The only remaining choice is to assign x

3

 = 5; this works because it leaves D empty, and so we 

have a solution.  

 

 

Figure 10.63 shows a decision tree representing the actions taken to arrive at the solution. 

Instead of labeling the branches, we have placed the labels in the branches' destination nodes. A 

node with an asterisk indicates that the points chosen are inconsistent with the given distances; 

nodes with two asterisks have only impossible nodes as children, and thus represent an incorrect 

path.  
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Figure 10.63 Decision tree for the worked turnpike reconstruction example

 

int

 

turnpike(int x [], dist_set D , unsigned int n)

 

{

 

/*1*/       x[1] = 0;

 

/*2*/       x[n ] = delete_max(D );

 

/*3*/       x[n - 1] = delete_max(D );

 

/*4*/       if(x[n ]-x[n - 1]  D )

 

{

 

/*5*/             delete( x[n ]-x[n - 1],D );

 

/*6*/             return place( x, D, n, 2,n - 2); }

 

else

 

/*7*/             return FALSE;

 

}

 

Figure 10.64 Turnpike reconstruction algorithm: driver routine (pseudocode)

 

The pseudocode to implement this algorithm is mostly straightforward. The driving routine, 

turnpike, is shown in Figure 10.64. It receives the point array x (which need not be 

initialized), the distance array D, and n.

*

 If a solution is discovered, then TRUE will be 

returned, the answer will be placed in x, and D will be empty. Otherwise, FALSE will be returned, 

x will be undefined, and the distance array D will be untouched. The routine sets x

1

, x

n-1

, and 

x

n

, as described above, alters D, and calls the backtracking algorithm place to place the other 

points. We presume that a check has already been made to ensure that | D | = n(n -1)/2.  
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*We have used one-letter variable names, which is generally poor style, for consistency with the worked example. We 
also, for simplicity, do not give the type of variables.  

The more difficult part is the backtracking algorithm, which is shown in Figure 10.65. Like most 

backtracking algorithms, the most convenient implementation is recursive. We pass the same 

arguments plus the boundaries Left and Right; x

Left

, . . . , x

Right

 are the x coordinates of 

points that we are trying to place. If D is empty (or Left > Right ), then a solution has been 

found, and we can return. Otherwise, we first try to place x

Right

 = D

max

. If all the appropriate 

distances are present (in the correct quantity), then we tentatively place this point, remove 

these distances, and try to fill from Left to Right- 1. If the distances are not present, or the 

attempt to fill Left to Right- 1 fails, then we try setting x

Left

 = x

n

 - d

max

, using a similar 

strategy. If this does not work, then there is no solution; otherwise a solution has been found, 

and this information is eventually passed back to turnpike by the return statement and x array.  

The analysis of the algorithm involves two factors. Suppose lines 9 through 11 and 18 through 20 

are never executed. We can maintain D as a balanced binary search (or splay) tree (this would 

require a code modification, of course). If we never backtrack, there are at most O(n

2

) 

operations involving D, such as deletion and the finds implied at lines 4 and 12 to 13. This 

claim is obvious for deletions, since D has O(n

2

) elements and no element is ever reinserted. 

Each call to place uses at most 2n finds, and since place never backtracks in this analysis, 

there can be at most 2n

2

 finds. Thus, if there is no backtracking, the running time is O(n

2 

log 

n).  

Of course, backtracking happens, and if it happens repeatedly, then the performance of the 

algorithm is affected. No polynomial bound on the amount of backtracking is known, but on the 

other hand, there are no pathological examples that show that backtracking must occur more than O

(1) times. Thus, it is entirely possible that this algorithm is O(n

2 

log n). Experiments have 

shown that if the points have integer coordinates distributed uniformly and randomly from [0, 

D

max

], where D

max

 = (n

2

), then, almost certainly, at most one backtrack is performed during 

the entire algorithm.  

10.5.2. Games

 

As our last application, we will consider the strategy that a computer might use to play a 

strategic game, such as checkers or chess. We will use, as an example, the much simpler game of 

tic-tac-toe, because it makes the points easier to illustrate.  

Tic-tac-toe is, of course, a draw if both sides play optimally. By performing a careful case-by-

case analysis, it is not a difficult matter to construct an algorithm that never loses and always 

wins when presented the opportunity. This can be done, because certain positions are known traps 

and can be handled by a lookup table. Other strategies, such as taking the center square when it 

is available, make the analysis simpler. If this is done, then by using a table we can always 

choose a move based only on the current position. Of course, this strategy requires the 

programmer, and not the computer, to do most of the thinking.  

/

*

 Backtracking algorithm to place the points 

*

/

 

/

*

 x[left]...x[right]. 

*

/

 

/

*

 x[1]...[left-1] and x[right+1]...x[n]

 

/

*

 are already tentatively placed 

* /

 

/* If place returns true,

 

页码，60/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



/* then x[left]...x[right] will have value. */ 

int

 

place( int x[ ], dist_set D , unsigned int n, int Left, int Right )

 

{

 

int d_max, found = FALSE;

 

/

*

1

*

/       if D is empty then

 

/

*

2

*

/            return TRUE;

 

/

*

3

*

/       d_max = find_max( D );

 

/

*

 Check if setting x[Right] = d_max is feasible. 

*

/

 

/

*

4

*

/       if( |x[ j ]-d_max|  D for all 1  j < Left and Right < j  n )

 

{

 

/

*

5

*

/            x[Right] = d_max; /

*

 Try x[Right] = d_max 

*

/

 

/

*

6

*

/            for( 1  j < Left, Right < j  n )

 

/

*

7

*

/                 delete( |x[j ]-d_max|, D );

 

/

*

8

*

/            found = place( x, D, n, Left, Right-1 );

 

/

*

9

*

/            if( !found ) /

*

 Backtrack 

*

/

 

/

*

10

*

/                for( 1  j < Left, Right < j  n) /

 

Undo the deletion 

*

/

 

/

*

11

*

/                     insert( |x[j ]-d_max:| D );

 

}

 

/

*

 If first attempt failed, try to see if setting 

*

/

 

/

*

 x[Left]=x[n]-d_max is feasible 

*

/

 

/

*

12

*

/      if( !found && (|x[n]-d_max-x[j ]|  D

 

/

*

13

*

/           for all 1  j < Left and Right < j  n) )

 

{

 

/*14*/           x[Left] = x [n] -d_max;      / * Same logic as before */

 

/*15*/           for( 1  j < Left, Right < j  n )
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/*16*/                delete( |x[n]-d_max -x [j ] |, D ); 

/*17*/           found = place( x, D, n, Left + 1, Right );

 

/

*

18

*

/      if( !found )     /

*

 Backtrack; undo the deletion 

*

/

 

/

*

19

*

/           for( 1  j < Left, Right < j  n )

 

/

*

20

*

/                insert( |x[n]-d_max-x[j ]|, D );

 

}

 

/

*

21

*

/      return found;

 

}

 

Figure 10.65 Turnpike reconstruction algorithm: backtracking steps (pseudocode)

 

Minimax Strategy

 

The general strategy is to use an evaluation function to quantify the "goodness" of a position. A 

position that is a win for a computer might get the value of +1; a draw could get 0; and a 

position that the computer has lost would get a - 1. A position for which this assignment can be 

determined by examining the board is known as a terminal position.  

If a position is not terminal, the value of the position is determined by recursively assuming 

optimal play by both sides. This is known as a minimax strategy, because one player (the human) 

is trying to minimize the value of the position, while the other player (the computer) is trying 

to maximize it.  

A successor position of P is any position P

s

 that is reachable from P by playing one move. If the 

computer is to move when in some position P, it recursively evaluates the value of all the 

successor positions. The computer chooses the move with the largest value; this is the value of 

P. To evaluate any successor position P

s

, all of P

s

's successors are recursively evaluated, and 

the smallest value is chosen. This smallest value represents the most favorable reply for the 

human player.  

The code in Figure 10.66 makes the computer's strategy more clear. Lines 1 through 4 evaluate 

immediate wins or draws. If neither of these cases apply, then the position is nonterminal. 

Recalling that value should contain the maximum of all possible successor positions, line 5 

initializes it to the smallest possible value, and the loop in lines 6 through 13 searches for 

improvements. Each successor position is recursively evaluated in turn by lines 8 through 10. 

This is recursive, because, as we will see, the procedure find_human_move calls find_comp_move. 

If the human's response to a move leaves the computer with a more favorable position than that 

obtained with the previously best computer move, then the value and best_move are updated. Figure 

10.67 shows the procedure for the human's move selection. The logic is virtually identical, 

except that the human player chooses the move that leads to the lowest-valued position. Indeed, 

it is not difficult to combine these two procedures into one by passing an extra variable, which 

indicates whose turn it is to move. This does make the code somewhat less readable, so we have 

stayed with separate routines.  

Since these routines must pass back both the value of the position and the best move, we pass the 

address of two variables that will get this information, by using pointers. The last two 

parameters now answer the question "WHERE?" instead of "WHAT? "  
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/

*

 Recursive procedure to find best move for computer 

*

/ 

/

*

 best_move points to a number from 1-9 indicating square. 

*

/

 

/

*

 Possible evaluations satisfy COMP_LOSS < DRAW < COMP_WIN 

*

/

 

/

*

 Complementary procedure find_human_move is below 

*

/

 

/

*

 board_type is an array; thus board can be changed by place ( ) 

*

/

 

void

 

find_comp_move( board_type board, int 

*

best_move, int 

*

value )

 

{

 

int dc, i, response; /

*

 dc means don't care 

*

/

 

/

*

1

*

/       if( full_board( board ) )

 

/

*

2

*/            *

value = DRAW;

 

else

 

/

*

3

*

/       if( immediate_comp_win( board, best_move ) )

 

/

*

4

*

/

       *

value = COMP_WIN;

 

else

 

{

 

/

*

5

*

/

            *

value = COMP_LOSS;

 

/

*

6

*

/            for( i=1; i<=9; i++ )    /

*

 try each square 

*

/

 

{

 

/

*

7

*

/                 if( is_empty( board, i ) )

 

{

 

/

*

8

*

/                     place( board, i, COMP );

 

/

*

9

*

/                     find_human_move( board, &dc, &response );

 

/

*

10

*

/                    unplace( board, i ); /

*

 Restore board 

*

/

 

/

*

11

*

/                    if( response >

*

 value ) /

*

 Update best move 

*

/

 

{

 

/

*

12

*

/

                         *

value = response;

 

/

*

13

*

/

                         *

best_move = i;

 

}

 

}
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} 

}

 

}

 

Figure 10.66 Minimax tic-tac-toe algorithm: computer selection

 

void

 

find_human_move( board_type board, int 

*

best_move, int *value )

 

{

 

int dc, i, response; /

*

 dc means don't care 

*

/

 

/

*

1

*

/       if( full_board( board ) )

 

/

*

2

*

/

            *

value = DRAW;

 

else

 

/

*

3

*

/       if( immediate_human_win( board, best_move ) )

 

/

*

4

*

/

            *

value = COMP_LOSS;

 

else

 

{

 

/

*

5

*

/

            *

value = COMP_WIN;

 

/

*

6

*

/            for( i=1; i<=9; i++ ) /

*

 try each square 

*

/

 

{

 

/

*

7

*

/                 if( is_empty( board, i ) )

 

{

 

/

*

8

*

/                      place( board, i, HUMAN );

 

/

*

9

*

/                      find_comp_move( board, &dc, &response );

 

/

*

10

*

/                     unplace( board, i ); /

*

 Restore board 

*

/

 

/

*

11

*

/                     if( response < 

*

 value ) /

*

 Update best move 

*/

 

{

 

/*

12

*

/

                          *

value = response;

 

/

*

13

*

/

                          *

best_move = i;

 

}

 

}

 

}
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} 

}

 

Figure 10.67 Min-max tic-tac-toe algorithm: human selection

 

As an example, in Figure 10.66, best_move contains the address where the best move can be placed. 

find_comp_move can examine or alter the data at that address by accessing 

*

best_move. Line 9 

shows how the calling routine should behave. Since the caller has two integers prepared to store 

the data, and find_human_move only wants the addresses of these two integers, the address 

operator (&) is used.  

If the & operator is not used at line 9, and both dc and response are zero (which would be 

typical of uninitialized data), the find_human_move will try to place its best move and position 

value in memory location zero. Of course, this is not what was intended, and will almost 

certainly result in a program crash (try it!). This is the most common error when using the scanf

family of library routines.  

We leave supporting routines as an exercise. The most costly computation is the case where the 

computer is asked to pick the opening move. Since at this stage the game is a forced draw, the 

computer selects square 1.* A total of 97,162 positions were examined, and the calculation took 

2.5 seconds on a VAX 8800. No attempt was made to optimize the code. When the computer moves 

second, the number of positions examined is 5,185 if the human selects the center square, 9,761 

when a corner square is selected, and 13,233 when a noncorner edge square is selected.  

*We numbered the squares starting from the top left and moving right. However, this is only important for the supporting 
routines.  

For more complex games, such as checkers and chess, it is obviously infeasible to search all the 

way to the terminal nodes.ç In this case, we have to stop the search after a certain depth of 
recursion is reached. The nodes where the recursion is stopped become terminal nodes. These 

terminal nodes are evaluated with a function that estimates the value of the position. For 

instance, in a chess program, the evaluation function measures such variables as the relative 

amount and strength of pieces and positional factors. The evaluation function is crucial for 

success, because the computer's move selection is based on maximizing this function. The best 

computer chess programs have surprisingly sophisticated evaluation functions.  

çIt is estimated that if this search were conducted for chess, at least 10100 positions would be examined for the first 
move. Even if the improvements described later in this section were incorporated, this number could not be reduced to a 
practical level.  

Nevertheless, for computer chess, the single most important factor seems to be number of moves of 

look-ahead the program is capable of. This is sometimes known as ply; it is equal to the depth of 

the recursion. To implement this, an extra parameter is given to the search routines.  

The basic method to increase the look-ahead factor in game programs is to come up with methods 

that evaluate fewer nodes without losing any information. One method which we have already seen 

is to use a table to keep track of all positions that have been evaluated. For instance, in the 

course of searching for the first move, the program will examine the positions in Figure 10.68. 

If the values of the positions are saved, the second occurrence of a position need not be 

recomputed; it essentially becomes a terminal position. The data structure that records this is 

known as a transposition table; it is almost always implemented by hashing. In many cases, this 

can save considerable computation. For instance, in a chess endgame, where there are relatively 

few pieces, the time savings can allow a search to go several levels deeper.  

-  Pruning
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Probably the most significant improvement one can obtain in general is known as -  

pruning. Figure 10.69 shows the trace of the recursive calls used to evaluate some hypothetical 

position in a hypothetical game. This is commonly referred to as a game tree. (We have avoided 

the use of this term until now, because it is somewhat misleading: no tree is actually 

constructed by the algorithm. The game tree is just an abstract concept.) The value of the game 

tree is 44.  

 

 

Figure 10.68 Two searches that arrive at identical position

 

Figure 10.70 shows the evaluation of the same game tree, with several unevaluated nodes. Almost 

half of the terminal nodes have not been checked. We show that evaluating them would not change 

the value at the root.  

First, consider node D. Figure 10.71 shows the information that has been gathered when it is time 

to evaluate D. At this point, we are still in find_human_move and are contemplating a call to 

find_comp_move on D. However, we already know that find_human_move will return at most 40, since 

it is a min node. On the other hand, its max node parent has already found a sequence that 

guarantees 44. Nothing that D does can possibly increase this value. Therefore, D does not need 

to be evaluated. This pruning of the tree is known as pruning. An identical situation occurs 

at node B. To implement  pruning, get_comp_move passes its tentative maximum ( ) to 

get_human_move. If the tentative minimum of get_human_move falls below this value, then 

get_human_move returns immediately.  

A similar thing happens at nodes A and C. This time, we are in the middle of a find_comp_move and 

are about to make a call to find_human_move to evaluate C. Figure 10.72 shows the situation that 

is encountered at node C. However, the sfind_human_move, at the min level, which has called 

find_comp_move, has already determined that it can force a value of at most 44 (recall that low 

values are good for the human side). Since find_comp_move has a tentative maximum of 68, nothing 

that C does will affect the result at the min level. Therefore, C should not be evaluated. This 

type of pruning is known as  pruning; it is the symmetric version of  pruning. When both 

techniques are combined, we have -  pruning. 
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Figure 10.69 A hypothetical game tree

 

 

 

Figure 10.70 A pruned game tree

 

 

 

Figure 10.71 The node marked ? is unimportant
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Figure 10.72 The node marked ? is unimportant 

Implementing -  pruning requires surprisingly little code. It is not as difficult as one 

might think, although many programmers have a very hard time doing it without looking at a 

reference book. 

Figure 10.73 shows half of the -  pruning scheme (minus type 

declarations); you should have no trouble coding the other half.  

/* Same as before, but perform  -  pruning.  */

 

/* The main routine should make the call with  = COMP_LOSS,

 

      = COMP_WIN. */

 

void

 

find_comp_move( board_type board, int *best_move, int *value,

 

int , int  )

 

{

 

int dc, i, response; /* dc means don't care */

 

/*1*/       if( full_board( board ) )

 

/*2*/            *value = DRAW;

 

else

 

/*3*/       if( immediate-comp_win( board, best_move ) )

 

/*4*/            *value = COMP_WIN;

 

else

 

{

 

/*5*/            *value =  ;

 

/*6*/            for( i=1; (i<=9) && (*value< ); i++)     /* try each square */

 

{

 

/*7*/                 if( is_empty( board, i ) )

 

{

 

/*8*/                      place( board, i, COMP );
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/*9*/                      find_human_move( board, &dc, &response, *value,  );

 

/*10*/                     unplace( board, i ); /* Restore board */

 

/*11*/                     if( response >* value ) /* Update best move */

 

{

 

/*12*/                          *value = response;

 

/*13*/                          *best_move = i;

 

}

 

}

 

}

 

}

 

}

 

Figure 10.73 Min-max tic-tac-toe algorithm with -  pruning: Computer selection.

 

To take full advantage of -  pruning, game programs usually try to apply the evaluation 

function to nonterminal nodes in an attempt to place the best moves early in the search. The 

result is even more pruning than one would expect from a random ordering of the nodes. Other 

techniques, such as searching deeper in more active lines of play, are also employed.  

In practice, -  pruning limits the searching to only  nodes, where n is the size 

of the full game tree. This a huge saving and means that searches using -  pruning can go 

twice as deep as compared to an unpruned tree. Our tic-tac-toe example is not ideal, because 

there are so many identical values, but even so, the initial search of 97,162 nodes is reduced to 

4,493 nodes. (These counts include nonterminal nodes).  

In many games, computers are among the best players in the world. The techniques used are very 

interesting, and can be applied to more serious problems. More details can be found in the 

references.  

Summary

 

This chapter illustrates five of the most common techniques found in algorithm design. When 

confronted with a problem, it is worthwhile to see if any of these methods apply. A proper choice 

of algorithm, combined with judicious use of data structures, can often lead quickly to efficient 

solutions.  

Exercises

 

10.1 Show that the greedy algorithm to minimize the mean completion time for multiprocessor job 

scheduling works.  
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10.2 The input is a set of jobs j

1

, j

2

, . . . , j

n

, each of which takes one time unit to 

complete. Each job j

i

 erans d

i

 dollars if it is completed by the time limit t

i

, but no money if 

completed after the time limit.  

(a) Give an O(n

2

) greedy algorithm to solve the problem. 

 

**(b) Modify your algorithm to obtain an O(n log n) time bound. Hint: The time bound is due 

entirely to sorting the jobs by money. The rest of the algorithm can be implemented, using the 

disjoint set data structure, in o(n log n).  

10.3 A file contains only colons, spaces, newline, commas, and digits in the following frequency: 

colon (100), space (605), newline (100), commas (705), 0 (431), 1 (242), 2 (176), 3 (59), 4 

(185), 5 (250), 6 (174), 7 (199), 8 (205), 9 (217). Construct the Huffman code.  

10.4 Part of the encoded file must be a header indicating the Huffman code. Give a method for 

constructing the header of size at most O(n) (in addition to the symbols), where n is the number 

of symbols.  

10.5 Complete the proof that Huffman's algorithm generates an optimal prefix code. 

 

10.6 Show that if the symbols are sorted by frequency, Huffman's algorithm can be implemented in 

linear time.  

10.7 Write a program to implement file compression (and uncompression) using Huffman's algorithm.

*10.8 Show that any on-line bin-packing algorithm can be forced to use at least  the optimal 

number of bins, by considering the following sequence of items: n items of size , n items 

of size , n items of size . 

 

10.9 Explain how to implement first fit and best fit in O(n log n) time. 

 

10.10 Show the operation of all of the bin-packing strategies discussed in Section 10.1.3 on the 

input 0.42, 0.25, 0.27, 0.07, 0.72, 0.86, 0.09, 0.44, 0.50, 0.68, 0.73, 0.31, 0.78, 0.17, 0.79, 

0.37, 0.73, 0.23, 0.30.  

10.11 Write a program that compares the performance (both in time and number of bins used) of the 

various bin packing heuristics.  

10.12 Prove Theorem 10.7. 

 

10.13 Prove Theorem 10.8. 

 

*10.14 n points are placed in a unit square. Show that the distance between the closest pair is O
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(n

-1/2

). 

 

*10.15 Argue that for the closest-points algorithm, the average number of points in the strip is 

( . Hint: Use the result of the previous exercise. 

 

10.16 Write a program to implement the closest-pair algorithm. 

 

10.17 What is the asymptotic running time of quickselect, using a median-of-median-of-three 

partitioning strategy?  

10.18 Show that quickselect with median-of-median-of-seven partitioning is linear. Why is median-

of-median-of-seven partitioning not used in the proof?  

10.19 Implement the quickselect algorithm in Chapter 7, quickselect using median-of-median-of-

five patitioning, and the sampling algorithm at the end of Section 10.2.3. Compare the running 

times.  

10.20 Much of the information used to compute the median-of-median-of-five is thrown away. Show 

how the number of comparisons can be reduced by more careful use of the information.  

*10.21 Complete the analysis of the sampling algorithm described at the end of Section 10.2.3, 

and explain how the values of  and s are chosen. 

 

10.22 Show how the recursive multiplication algorithm computes xy, where x = 1234 and y = 4321. 

Include all recursive computations.  

10.23 Show how to multiply two complex numbers x = a + bi and y = c + di using only three 

multiplications.  

10.24 (a) Show that 

 

x

l

y

r

 + x

r

y

l

 = (x

l

 + x

r

)(y

l

 + y

r

) - x

l

y

l

 - x

r

y

r

 

(b) This gives an O(n

1.59

) algorithm to multiply n-bit numbers. Compare this method to the 

solution in the text.  

10.25 * (a) Show how to multiply two numbers by solving five problems that are roughly one-third 

of the original size.  

**(b) Generalize this problem to obtain an O(n

1+

) algorithm for any constant  > 0. 

 

(c) Is the algorithm in part (b) better than O(n log n)? 

 

10.26 Why is it important that Strassen's algorithm does not use commutativity in the 

multiplication of 2 X 2 matrices?  
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10.27 Two 70 X 70 matrices can be multiplied using 143,640 multiplications. Show how this can be 

used to improve the bound given by Strassen's algorithm.  

10.28 What is the optimal way to compute A

1

A

2

A

3

A

4

A

5

A

6

, where the dimensions of the matrices are: 

A

l

: 10 X 20, A

2

: 20 X 1, A

3

: 1 X 40, A

4

: 40 X 5, A

5

: 5 X 30, A

6

: 30 X 15?  

10.29 Show that none of the following greedy algorithms for chained matrix multiplication work. 

At each step  

(a) Compute the cheapest multiplication. 

 

(b) Compute the most expensive multiplication. 

 

(c) Compute the multiplication between the two matrices M

i

 and M

i+1

, such that the number of 

columns in M

i

 is minimized (breaking ties by one of the rules above).  

10.30 Write a program to compute the best ordering of matrix multiplication. Include the routine 

to print out the actual ordering.  

10.31 Show the optimal binary search tree for the following words, where the frequency of 

occurrence is in parentheses: a (0.18), and (0.19), I (0.23), it (0.21) , or (0.19).  

*10.32 Extend the optimal binary search tree algorithm to allow for unsuccessful searches. In 

this case, q

j

, for 1  j < n, is the probability that a search is performed for any word W 

satisfying wj < W < w
j+1

. q

0

 is the probability of performing a search for W < w

1

, and q

n

is the 

probability of performing a search for W > w

n

. Notice that . 

 

*10.33 Suppose C

i,i

 = 0 and that otherwise 

 

 

 

Suppose that W satisfies the quadrangle inequality, namely, for all i  i'  j  j', 

 

W

i, j

 + W

i',j

'  W

i',j

 + W

i, j

'

 

Suppose further, that W is monotone: If i  i' and j'  j', then Wi,j  W

i

',,j' . 

 

(a) Prove that C satisfies the quadrangle inequality. 

 

(b) Let R

i, j

 be the largest k that achieves the minimum C

i,k-1

 + C

k,j

. (That is, in case of 

ties, choose the largest k). Prove that  
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R

i, j

  R

i, j+1

  R

i+1,j+1

 

(c) Show that R is nondecreasing along each row and column. 

 

(d) Use this to show that all entries in C can be computed in O(n

2

) time. 

 

(e) Which of the dynamic programming algorithms can be solved in O(n

2

) using these techniques? 

 

10.34 Write a routine to reconstruct the shortest paths from the algorithm in Section 10.3.4. 

 

10.35 Examine the random number generator on your system. How random is it? 

 

10.36 Write the routines to perform insertion, deletion, and searching in skip lists. 

 

10.37 Give a formal proof that the expected time for the skip list operations is O(log n). 

 

10.38 Figure 10.74 shows a routine to flip a coin, assuming that random returns an integer (which 

is prevalent in many systems). What is the expected performance of the skip list algorithms if 

the random number generator uses a modulus of the form m = 2

b

 (which is unfortunately prevalent 

on many systems)?  

10.39 (a) Use the exponentiation algorithm to prove that 2

340

  1(mod 341). 

 

(b) Show how the randomized primality test works for n = 561 with several choices of a. 

 

10.40 Implement the turnpike reconstruction algorithm. 

 

10.41 Two point sets are homometric if they yield the same distance set and are not rotations of 

each other. The following distance set gives two distinct point sets: 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 13, 16, 17 . Find the two point sets.  

enum coin_side { heads, tails };

 

typedef enum coin_side coin_side;

 

coin_side

 

flip( void )

 

{

 

if( ( rand() % 2 ) == 0 )

 

return heads;

 

else

 

return tails;

 

}
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Figure 10.74 Questionable coin flipper 

 

 

Figure 10.75 Game tree, which can be pruned

 

10.42 Extend the reconstruction algorithm to find all homometric point sets given a distance set.

10.43 Show the result of -  pruning the tree in Figure 10.75. 

 

10.44 (a) Does the code in Figure 10.73 implement  pruning or  pruning? 

 

(b) Implement the complementary routine. 

 

10.45 Write the remaining procedures for tic-tac-toe. 

 

10.46 The one-dimensional circle packing problem is as follows: You have n circles of radii r

1

, 

r

2

, . . . , r

n.

 These circles are packed in a box such that each circle is tangent to the bottom 

of the box, and are arranged in the original order. The problem is to find the width of the 

minimum-sized box.  

Figure 10.76 shows an example with circles of radii 2, 1, 2 respectively. The minimum-sized box 

has width  

 

*10.47 Suppose that the edges in an undirected graph G satisfy the triangle inequality: c

u,v

 + 

c

v,w

  c

u,w

. Show how to compute a traveling salesman tour of cost at most twice optimal. 

Hint: Construct a minimum spanning tree.  

*10.48 You are a tournament director and need to arrange a round robin tournament among n = 2

k

 

players. In this tournament, everyone plays exactly one game each day; after n - 1 days, a match 

has occurred between every pair of players. Give an algorithm to do this.  
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Figure 10.76 Sample for circle packing problem

 

10.49 (a) Prove that in a round robin tournament it is always possible to arrange the players in 

an order p

i1, 

p

2, 

p

in

 such that for all 1  j < n, p

ij

 has won the match against pij + 1. 
 

(b) Gve an O(n log n) algorithm to find one such arrangement. Your algorithm may serve as a proof 

for part (a).  

*10.50 We are given a set P = p

1

, p

2

, . . . , p

n

 of n points in a plane. A Voronoi diagram is a 

partition of the plane into n regions Ri such that all points in Ri are closer to 

p

i than any 

other point in P. Figure 10.77 shows a sample Voronoi diagram for seven (nicely arranged) points. 

Give an O(n log n) algorithm to construct the Voronoi diagram.  

*10.51 A convex polygon is a polygon with the property that any line segment whose endpoints are 

on the polygon lies entirely within the polygon. The convex hull problem consists of finding the 

smallest (area) convex polygon which encloses a set of points in the plane. Figure 10.78 shows 

the convex hull for a set of 40 points. Give an O(n log n) algorithm to find the convex hull.  

 

 

Figure 10.77 Voronoi diagram
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Figure 10.78 Example of a convex hull

 

*10.52 Consider the problem of right-justifying a paragraph. The paragraph contains a sequence of 

words w

1

, w

2

, . . . ,w

n

 of length a

1

, a

2

, . . . , a

n

, which we wish to break into lines of length 

L. Words are separated by blanks whose ideal length is b (millimeters), but blanks can stretch or 

shrink as necessary (but must be >0), so that a line w

i 

w

i+1

. . . w

j

 has length exactly L. 

However, for each blank b' we charge |b' - b ugliness points. The exception to this is the last 

line, for which we charge only if b' < b (in other words, we charge only for shrinking), since 

the last line does not need to be justified. Thus, if b

i

 is the length of the blank between a

i

 

and a

i+1

, then the ugliness of setting any line (but the last) w

i

w

i+1 

. . . w

j 

for j > i is 

, where b' is the average size of a blank on this line. This is 

true of the last line only if b' < b, otherwise the last line is not ugly at all.  

(a) Give a dynamic programming algorithm to find the least ugly setting of w

1

, w

2

, . . ., w

n

into 

lines of length L. Hint: For i = n, n - 1, . . . , 1, compute the best way to set w

j

, w

i+1

, . . . 

, w

n 

 

(b) Give the time and space complexities for your algorithm (as a function of the number of 

words, n).  

(c) Consider the special case where we are using a line printer instead of a laser printer, and 

assume the optimal value of b is 1 (space). In this case, no shrinking of blanks is allowed, 

since the next smallest blank space would be 0. Give a linear-time algorithm to generate the 

least ugly setting on a line printer.  

*10.53 The longest increasing subsequence problem is as follows: Given numbers a

1

, a

2

, . . ., a

n

, 

find the maximum value of k such that a

i1

 < a

i2

 <    < a

ik

, and i

1

 < i

2

 <   

 < i

k

. As an example, if the input is 3, 1, 4, 1, 5, 9, 2, 6, 5, the maximum increasing 

subsequence has length four ( 1, 4, 5, 9 among others ). Give an O(n

2

) algorithm to solve the 

longest increasing subsequence problem.  

*10.54 The longest common subsequence problem is as follows: Given two sequences A = a

1

, a

2

, . . 

. , a

m

, and B = b

1

, b

2

, . . . , b

n

, find the length, k, of the longest sequence C = c

1

, c

2

, . . . 

, c

k

 such that C is a subsequence of both A and B. As an example, if  

A = d, y, n, a, m, i, c
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and  

B = p, r, o, g, r, a, m, m, i, n, g,

 

then the longest common subsequence is a,m and has length 2. Give an algorithm to solve the 

longest common subsequence problem. Your algorithm should run in O(mn) time.  

*10.55 The pattern matching problem is as follows: Given a string S of text, and a pattern P, 

find the first occurrence of P in S. Approximate pattern matching allows k mismatches of three 

types:  

1. A character can be in S that is not in P. 

 

2. A character can be in P that is not in S. 

 

3. P and S can differ in a position. 

 

As an example, if we are searching for the pattern "textbook" with at most three mismatches in 

the string "data structures txtborkk", we find a match (insert an e, change an r to an o, delete 

a k). Give an O(mn) algorithm to solve the approximate string matching problem, where m = |P| and 

n = |S|.  

*10.56 One form of the knapsack problem is as follows: We are given a set of integers A = a

1

, a

2

, 

. . . , a

n

 and an integer K. Is there a subset of A whose sum is exactly K?  

(a) Give an algorithm that solves the knapsack problem in O(nK) time. 

 

(b) Why does this not show that P = NP? 

 

*10.57 You are given a currency system with coins of (decreasing) value c

1

, c

2

, . . . , c

n

 cents.

(a) Give an algorithm that computes the minimum number of coins required to give K cents in 

change.  

(b) Give an algorithm that computes the number of different ways to give K cents in change. 

 

*10.58 Consider the problem of placing eight queens on an (eight by eight) chess board. Two 

queens are said to attack each other if they are on the same row, column, or (not necessarily 

main) diagonal.  

(a) Give a randomized algorithm to place eight nonattacking queens on the board. 

 

(b) Give a backtracking algorithm to solve the same problem. 

 

(c) Implement both algorithms and compare the running time. 

 

distance

 

shortest( s, t, G )

 

{

 

distance d

t

,tmp;
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if( s == t ) 

return 0;

 

d

t

 = ;

 

for each vertex v adjacent to s

 

{

 

tmp = shortest( v, t, G );

 

if( c

s,v

 + tmp < d

t

 )

 

d

t

 = c

s,v

 + tmp;

 

}

 

return d

t

 

}

 

Figure 10.79 Recursive shortest path algorithm

 

*10.59 In the game of chess, a knight in row r and column c may move to row 1  r'  B and 

column 1  c'  B (where B is the size of the board) provided that either 

 

|r - r'| = 2 and |c - c'| = 1

 

or 

 

|r - r'| = 1 and |c - c'| = 2

 

A knight's tour is a sequence of moves that visits all squares exactly once before returning to 

the starting point.  

(a) If B is odd, show that a knight's tour cannot exist. 

 

(b) Give a backtracking algorithm to find a knight's tour. 

 

10.60 Consider the recursive algorithm in Figure 10.79 for finding the shortest weighted path in 

an acyclic graph, from s to t.  

(a) Why does this algorithm not work for general graphs? 

 

(b) Prove that this algorithm terminates for acyclic graphs. 

 

(c) What is the worst-case running time of the algorithm? 
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